Promotion of apoptosis and suppression of proliferation in tumor cells are popular strategies for developing anticancer drugs. Sinomenine (SIN), a plant-derived alkaloid, displays antitumor activity. However, the mechanism of action of SIN against hepatocellular carcinoma (HCC) is unclear. Herein, several molecular technologies, such as Western Blotting, qRT-PCR, flow cytometry, and gene knockdown were applied to explore the role and mechanism of action of SIN in the treatment of HCC. It was found that SIN arrests HCC cell cycle at G0/G1 phase, induces apoptosis, and suppresses proliferation of HCC cells via down-regulating the expression of membrane-associated RING-CH finger protein 1 (MARCH1). Moreover, SIN induces cell death and growth inhibition through AMPK/STAT3 signaling pathway. MARCH1 expression was silenced by siRNA to explore its involvement in the regulation of AMPK/STAT3 signaling pathway. Silencing MARCH1 caused down-regulation of phosphorylation of AMPK, STAT3 and decreased cell viability and function. Our results suggested that SIN inhibits proliferation and promotes apoptosis of HCC cells by MARCH1-mediated AMPK/STAT3 signaling pathway. This study provides new support for SIN as a clinical anticancer drug and illustrates that targeting MARCH1 could be a novel treatment strategy in developing anticancer therapeutics.
Hyperproliferation of mesangial cells (MCs) is the central pathological feature observed in certain human renal diseases. Furthermore, the long non-coding RNA uc.412 is regulated by transforming growth factor β1 in mesangial cells in vitro. The present study aimed to investigate whether uc.412 serves a role in renal fibrosis and whether it may be considered as a therapeutic target in mesangial proliferative kidney diseases. The results demonstrated that uc.412 overexpression significantly increased MC proliferation. The transcriptional profile of MCs overexpressing uc.412 was assessed by RNA sequencing. A total of 462 up- and 843 downregulated genes were identified (|fold change| ≥1.5), and reverse transcription-quantitative PCR was used to determine the expression of these differentially expressed genes (DEGs). Subsequently, the potential function of these DEGs was determined by bioinformatics analyses. The results indicated that these DEGs were involved in numerous signaling pathways associated with MC proliferation. The downstream association between up- and downregulated genes was constructed via the STRING database. The protein-protein interaction network indicated that serpin family E member 1 and matrix metallopeptidase 3 may be hub proteins. In conclusion, the present study provided novel insight into the role of uc.412 in MC proliferation, which may aid in the development of novel treatment for mesangial proliferative kidney diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.