A series of zero-dimensional Ge/Si quantum dots (QDs) samples are fabricated by inducing the transformation from the two-dimensional Ge thin film, which is grown by the traditional direct current (DC) magnetron sputtering, via regulating the annealing process. The QD density increases sharply after the post rapid thermal annealing (PRTA). The observations of atomic force microscopy (AFM) and Raman spectroscopy suggest that the good morphology of Ge QDs results from an appropriate thermodynamics and kinetics surrounding shaped by the cooperative interaction of the Ge-Si lattice mismatch, the film's surface temperature, and the difference in thermal expansion coefficients between Ge and Si. The photoluminescence (PL) peaks of Ge QDs are detected in monolayer Ge QDs with ultrahigh density at 17 K. The Metal-Ge/Si QDs-Metal (MGM) photodetector fabricated from the ultrahigh-density QDs sample exhibits a relatively high current gain, absolute photoelectric responsivity, and internal quantum efficiency (IQE). Our results demonstrate that the high-quality Ge QDs with strong light absorption and quantum confinement effect can be realized by modulating DC magnetron sputtering and the PRTA process. This paves the way for realizing silicon-based optoelectronic devices with high performance by the traditional, relatively low-cost, and large-scale production nanomaterial fabricating method.
Ge/Si quantum dots (QDs) are fabricated by driving the transformation of a Ge thin film-deposited using the direct current (DC) magnetron sputtering technique by controlling the subsequent in situ annealing processes. The experimental results indicate that, with the increase in annealing temperature, the volume of Ge QDs increases monotonically, while the QD density initially increases then decreases. The maximal QD density can reach 1.1 × 1011 cm−2 after a 10 min annealing at 650 °C. The Ge–Ge peak of Ge QDs obtained by Raman spectroscopy initially undergoes a blue shift and then a red shift with increasing annealing temperature. This behavior results from the competition between the dislocation and the strain relaxation in QDs. Concurrently, a series of photoelectric detectors are fabricated to evaluate the photoelectric performance of these annealed Ge QD samples. A high-photoelectricity response is demonstrated in the QD sample annealed at 650 °C. Our results pave a promising way for whole-silicon-material optical-electronic integration based on a simple and practicable fabrication method.
Polystyrene (PS) nanoparticle films with non-close-packed arrays were prepared by using ion beam etching technology. The effects of etching time, beam current, and voltage on the size reduction of PS particles were well investigated. A slow etching rate, about 9.2 nm/min, is obtained for the nanospheres with the diameter of 100 nm. The rate does not maintain constant with increasing the etching time. This may result from the thermal energy accumulated gradually in a long-time bombardment of ion beam. The etching rate increases nonlinearly with the increase of beam current, while it increases firstly then reach its saturation with the increase of beam voltage. The diameter of PS nanoparticles can be controlled in the range from 34 to 88 nm. Based on the non-close-packed arrays of PS nanoparticles, the ordered silicon (Si) nanopillars with their average diameter of 54 nm are fabricated by employing metal-assisted chemical etching technique. Our results pave an effective way to fabricate the ordered nanostructures with the size less than 100 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.