Perovskite oxides with flexible compositions and electronic structures have great potential for application in electrocatalytic water oxidation reactions. However, few studies have focused on the application of perovskite oxides in electrocatalytic oxidation reactions of organic molecules, probably due to the absence of active species because of the poor conductivity and high energy barrier of the surface reconstruction. Herein, we report Cu 3 N nanosheets with a typical antiperovskite structure as electrocatalysts for selectively converting methanol to formate. The as-prepared antiperovskite nitride Cu 3 N samples exhibit a Faradic efficiency exceeding 90% for methanol to formate over a wide potential range, which was further confirmed by online electrochemical mass spectrometry and in situ infrared reflectance absorption spectroscopy. Moreover, the high-resolution transmission electron microscopy, X-ray absorption spectroscopy, and in situ Raman spectroscopy results indicate that the core-shell structure formed by generating surface Cu(II) species triggers the electrocatalytic methanol oxidation reaction activity, whereas the pristine Cu 3 N core facilitates the electron transport inside the catalyst during the electrocatalytic process.This study provides a modelable scheme for the highly selective conversion of methanol and introduces a novel nonoxide perovskite material for the electrochemical conversion of small-organic molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.