Summary Environmental stimuli‐triggered stomatal movement is a key physiological process that regulates CO2 uptake and water loss in plants. Stomata are defined by pairs of guard cells that perceive and transduce external signals, leading to cellular volume changes and consequent stomatal aperture change. Within the visible light spectrum, red light induces stomatal opening in intact leaves. However, there has been debate regarding the extent to which red‐light‐induced stomatal opening arises from direct guard cell sensing of red light versus indirect responses as a result of red light influences on mesophyll photosynthesis. Here we identify conditions that result in red‐light‐stimulated stomatal opening in isolated epidermal peels and enlargement of protoplasts, firmly establishing a direct guard cell response to red light. We then employ metabolomics workflows utilizing gas chromatography mass spectrometry and liquid chromatography mass spectrometry for metabolite profiling and identification of Arabidopsis guard cell metabolic signatures in response to red light in the absence of the mesophyll. We quantified 223 metabolites in Arabidopsis guard cells, with 104 found to be red light responsive. These red‐light‐modulated metabolites participate in the tricarboxylic acid cycle, carbon balance, phytohormone biosynthesis and redox homeostasis. We next analyzed selected Arabidopsis mutants, and discovered that stomatal opening response to red light is correlated with a decrease in guard cell abscisic acid content and an increase in jasmonic acid content. The red‐light‐modulated guard cell metabolome reported here provides fundamental information concerning autonomous red light signaling pathways in guard cells.
Background Lonicera japonica Thunb. flower has been used for the treatment of various diseases for a long time and attracted many studies on its potential effects. Transcription factors (TFs) regulate extensive biological processes during plant development. As the restricted reports of L. japonica on TFs, our work was carried out to better understand the TFs’ regulatory roles under different developmental stages in L. japonica . Results In this study, 1316 TFs belonging to 52 families were identified from the transcriptomic data, and corresponding expression profiles during the L. japonica flower development were comprehensively analyzed. 917 (69.68%) TFs were differentially expressed. TFs in bHLH, ERF, MYB, bZIP, and NAC families exhibited obviously altered expression during flower growth. Based on the analysis of differentially expressed TFs (DETFs), TFs in MYB, WRKY, NAC and LSD families that involved in phenylpropanoids biosynthesis, senescence processes and antioxidant activity were detected. The expression of MYB114 exhibited a positive correlation with the contents of luteoloside; Positive correlation was observed among the expression of MYC12 , chalcone synthase (CHS) and flavonol synthase (FLS) , while negative correlation was observed between the expression of MYB44 and the synthases; The expression of LSD1 was highly correlated with the expression of SOD and the total antioxidant capacity, while the expression of LOL1 and LOL2 exhibited a negative correlation with them; Many TFs in NAC and WRKY families may be potentially involved in the senescence process regulated by hormones and reactive oxygen species (ROS). The expression of NAC19 , NAC29 , and NAC53 exhibited a positive correlation with the contents of ABA and H 2 O 2 , while the expression of WRKY53 , WRKY54 , and WRKY70 exhibited a negative correlation with the contents of JA, SA and ABA. Conclusions Our study provided a comprehensive characterization of the expression profiles of TFs during the developmental stages of L. japonica . In addition, we detected the key TFs that may play significant roles in controlling active components biosynthesis, antioxidant activity and flower senescence in L. japonica , thereby providing valuable insights into the molecular networks underlying L. japonica flower development. Electronic supplemen...
Metabolomics has been used in unraveling metabolites that play essential roles in plant–microbe (including pathogen) interactions. However, the problem of profiling a plant metabolome with potential contaminating metabolites from the coexisting microbes has been largely ignored. To address this problem, we implemented an effective stable isotope labeling approach, where the metabolome of a plant bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000 was labeled with heavy isotopes. The labeled bacterial cells were incubated with Arabidopsis thaliana epidermal peels (EPs) with guard cells, and excessive bacterial cells were subsequently removed from the plant tissues by washing. The plant metabolites were characterized by liquid chromatography mass spectrometry using multiple reactions monitoring, which can differentiate plant and bacterial metabolites. Targeted metabolomic analysis suggested that Pst DC3000 infection may modulate stomatal movement by reprograming plant signaling and primary metabolic pathways. This proof-of-concept study demonstrates the utility of this strategy in differentiation of the plant and microbe metabolomes, and it has broad applications in studying metabolic interactions between microbes and other organisms.
Clematis terniflora DC. has potential pharmaceutical value; on the contrary, high-level UV-B irradiation with dark treatment led to the accumulation of secondary metabolites. Metabolomic and proteomic analyses of leaf of C. terniflora were performed to investigate the systematic response mechanisms to high-level UV-B irradiation with dark treatment. Metabolites related to carbohydrates, fatty acids, and amino acids and/or proteins related to stress, cell wall, and amino acid metabolism were gradually increased in response to high-level UV-B irradiation with dark treatment. On the basis of cluster analysis and mapping of proteins related to amino acid metabolism, the abundances of S-adenosylmethionine synthetase and cysteine synthase as well as 1,1-diphenyl-2-picrylhydrazyl scavenging activity were gradually increased in response to high-level UV-B irradiation with dark treatment. Furthermore, the abundance of dihydrolipoyl dehydrogenase/glutamate dehydrogenase and the content of γ-aminobutyric acid were also increased following high-level UV-B irradiation with dark treatment. Taken together, these results suggest that high-level UV-B irradiation with dark treatment induces the activation of reactive oxygen species scavenging system and γ-aminobutyric acid shunt pathway in leaf of C. terniflora.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.