Local and rapid heating by microwave (MW) irradiation is important in the clinical treatment of tumors using hyperthermia. We report here a new thermo-seed technique for the highly efficient MW irradiation ablation of tumors in vivo based on gelatin microcapsules. We achieved 100% tumor elimination in a mouse model at an ultralow power of 1.8 W without any side-effects. The results of MTT assays, a hemolysis test and the histological staining of organs indicated that the gelatin microcapsules showed excellent compatibility with the physiological environment. A possible mechanism is proposed for MW hyperthermia using gelatin microcapsules. We also used gelatin microcapsules capped with CdTe quantum dots for in vivo optical imaging. Our study suggests that these microcapsules may have potential applications in imaging-guided cancer treatment.
The combination of therapies and monitoring the treatment process has become a new concept in cancer therapy. Herein, gelatin-based microcapsules have been first reported to be used as microwave (MW) susceptible agent and magnetic resonance (MR) imaging contrast agent for cancer MW thermotherapy. Using the simple coacervation methods, ionic liquid (IL) and Fe3O4 nanoparticles (NPs) were wrapped in microcapsules, and these microcapsules showed good heating efficacy in vitro under MW irradiation. The results of cell tests indicated that gelatin/IL@Fe3O4 microcapsules possessed excellent compatibility in physiological environments, and they could effectively kill cancer cells with exposure to MW. The ICR mice bearing H22 tumors treated with gelatin/IL@Fe3O4 microcapsules were obtained an outstanding MW thermotherapy efficacy with 100% tumor elimination under ultralow density irradiation (1.8 W/cm(2), 450 MHz). In addition, the applicability of the microcapsules as an efficient contrast agent for MR imaging in vivo was evident. Therefore, these multifunctional microcapsules have a great potential for MR imaging-guided MW thermotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.