In the past 50 years there have been considerable efforts to identify the cellular receptor of hepatitis B virus (HBV). Recently, in vitro evidence from several groups has shown that the sodium-taurocholate cotransporting polypeptide (NTCP, which is encoded by SLC10A1 and transports bile acids into hepatic cells in enterohepatic recirculation) is a strong candidate. In particular, in vitro the p.Ser267Phe variation of SLC10A1 results in loss of HBV receptor function. We tested the role of NTCP as a receptor for HBV in chronic hepatitis B patients using a genetic association study. We selected SLC10A1 variants from 189 exomes. We used Sanger sequencing to follow up the association of the various SLC10A1 variants in a Han Chinese cohort of 1899 chronic hepatitis B patients and 1828 healthy controls. We further investigated the potential impact of the p.Ser267-Phe variant on NTCP function using structural analysis. The p.Ser267Phe variant was associated with healthy status (P 5 5.7 3 10 223 , odds ratio 5 0.36) irrespective of hepatitis B virus surface antibody status (P 5 6.2 3 10 221 and 1.5 3 10 210 , respectively, when the cases were compared with hepatitis B virus surface antibody-positive and -negative controls). The variation was also associated with a lower incidence of acute-on-chronic liver failure (P 5 0.007). The estimated heritability explained by this single variation was 3.2%. The population prevented fraction was around 13.0% among the southern Chinese. Our structural modeling showed that the p.Ser267Phe variant might interfere with ligand binding, thereby preventing HBV from cellular entry. Conclusion: The p.Ser267Phe NTCP variant is significantly associated with resistance to chronic hepatitis B and a lower incidence of acute-on-chronic liver failure. Our results support that NTCP is a cellular receptor for HBV in human infection. (HEPATOLOGY 2015;61:1251-1260 C hronic hepatitis B (CHB) affects approximately 240 million people worldwide and is responsible for about 780,000 deaths annually (http://www.who.int/mediacentre/factsheets/fs204/en/).Clinically, CHB holds the most significant medical consequences among hepatitis B virus (HBV)-infected individuals. Acute-on-chronic liver failure (ACLF) is the most urgent and lethal condition related to CHB.Abbreviations: ACLF, acute-on-chronic liver failure; AIM, ancestry-informative marker; ASBT, apical sodium-dependent bile acid transporter; CHB, chronic hepatitis B; HBV, hepatitis B virus; HBsAb, hepatitis B virus surface antibody; HBsAg, hepatitis B virus surface antigen; HDV, hepatitis D virus; NTCP, sodiumtaurocholate cotransporting polypeptide..From the
Aims/hypothesisHuman complex metabolic traits are in part regulated by genetic determinants. Here we applied exome sequencing to identify novel associations of coding polymorphisms at minor allele frequencies (MAFs) >1% with common metabolic phenotypes.MethodsThe study comprised three stages. We performed medium-depth (8×) whole exome sequencing in 1,000 cases with type 2 diabetes, BMI >27.5 kg/m2 and hypertension and in 1,000 controls (stage 1). We selected 16,192 polymorphisms nominally associated (p < 0.05) with case–control status, from four selected annotation categories or from loci reported to associate with metabolic traits. These variants were genotyped in 15,989 Danes to search for association with 12 metabolic phenotypes (stage 2). In stage 3, polymorphisms showing potential associations were genotyped in a further 63,896 Europeans.ResultsExome sequencing identified 70,182 polymorphisms with MAF >1%. In stage 2 we identified 51 potential associations with one or more of eight metabolic phenotypes covered by 45 unique polymorphisms. In meta-analyses of stage 2 and stage 3 results, we demonstrated robust associations for coding polymorphisms in CD300LG (fasting HDL-cholesterol: MAF 3.5%, p = 8.5 × 10−14), COBLL1 (type 2 diabetes: MAF 12.5%, OR 0.88, p = 1.2 × 10−11) and MACF1 (type 2 diabetes: MAF 23.4%, OR 1.10, p = 8.2 × 10−10).Conclusions/interpretationWe applied exome sequencing as a basis for finding genetic determinants of metabolic traits and show the existence of low-frequency and common coding polymorphisms with impact on common metabolic traits. Based on our study, coding polymorphisms with MAF above 1% do not seem to have particularly high effect sizes on the measured metabolic traits.Electronic supplementary materialThe online version of this article (doi:10.1007/s00125-012-2756-1) contains peer-reviewed but unedited supplementary material, which is available to authorised users.
Overnutrition results in adiposity and chronic inflammation with expansion of white adipose tissue (WAT). However, genetic factors controlling fat mass and adiposity remain largely undetermined. We applied whole-exome sequencing in young obese subjects and identified rare gain-of-function mutations in CTNNB1/β-catenin associated with increased obesity risk. Specific ablation of β-catenin in mature adipocytes attenuated high-fat diet–induced obesity and reduced sWAT mass expansion with less proliferated Pdgfrα+ preadipocytes and less mature adipocytes. Mechanistically, β-catenin regulated the transcription of serum amyloid A3 (Saa3), an adipocyte-derived chemokine, through β-catenin–TCF (T-Cell-Specific Transcription Factor) complex in mature adipocytes, and Saa3 activated macrophages to secrete several factors, including Pdgf-aa, which further promoted the proliferation of preadipocytes, suggesting that β-catenin/Saa3/macrophages may mediate mature adipocyte-preadipocyte cross-talk and fat expansion in sWAT. The identification of β-catenin as a key regulator in fat expansion and human adiposity provides the basis for developing drugs targeting Wnt/β-catenin pathway to combat obesity.
The bovine genetic resources in China are diverse, but their value and potential are yet to be discovered. To determine the genetic diversity and population structure of Chinese cattle, we analysed the whole genomes of 46 cattle from six phenotypically and geographically representative Chinese cattle breeds, together with 18 Red Angus cattle (RAN) genomes, 11 Japanese black cattle (JBC) genomes and taurine and indicine genomes available from previous studies. Our results showed that Chinese cattle originated from hybridization between Bos taurus and Bos indicus. Moreover, we found that the level of genetic variation in Chinese cattle depends upon the degree of indicine content. We also discovered many potential selective sweep regions associated with domestication related to breed-specific characteristics, with selective sweep regions including genes associated with coat colour (ERCC2, MC1R, ZBTB17 and MAP2K1), dairy traits (NCAPG, MAPK7, FST, ITFG1, SETMAR, PAG1, CSN3 and RPL37A), and meat production/quality traits (such as BBS2, R3HDM1, IGFBP2, IGFBP5, MYH9, MYH4 and MC5R). These findings substantially expand the catalogue of genetic variants in cattle and reveal new insights into the evolutionary history and domestication traits of Chinese cattle.
SLC10A1 codes for the sodium-taurocholate cotransporting polypeptide (NTCP), which is a hepatocellular transporter for bile acids (BAs) and the receptor for hepatitis B and D viruses. NTCP is also a target of multiple drugs. We aimed to evaluate the medical consequences of the loss of function mutation p.Ser267Phe in SLC10A1. We identified eight individuals with homozygous p.Ser267Phe mutation in SLC10A1 and followed up for 8–90 months. We compared their total serum BAs and 6 species of BAs with 170 wild-type and 107 heterozygous healthy individuals. We performed in-depth medical examinations and exome sequencing in the homozygous individuals. All homozygous individuals had persistent hypercholanemia (P = 5.8 × 10–29). Exome sequencing excluded the involvement of other BA metabolism-associated genes in the hypercholanemia. Although asymptomatic, all individuals had low vitamin D levels. Of six adults that were subjected to bone mineral density analysis, three presented with osteoporosis/osteopenia. Sex hormones and blood lipids were deviated in all subjects. Homozygosity of p.Ser267Phe in SLC10A1 is associated with asymptomatic hypercholanemia. Individuals with homozygous p.Ser267Phe in SLC10A1 are prone to vitamin D deficiency, deviated sex hormones and blood lipids. Surveillance of these parameters may also be needed in patients treated with drugs targeting NTCP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.