Social insects use cuticular hydrocarbons (CHCs) to convey different social signals, including colony or nest identity. Despite extensive investigations, the exact source and identity of CHCs that act as nest-specific identification signals remain largely unknown. Perhaps this is because studies that identify CHC signals typically use organic solvents to extract a single sample from the entire animal, thereby analysing a cocktail of chemicals that may serve several signal functions. We took a novel approach by first identifying CHC profiles from different body parts of ants (Iridomyrmex purpureus), then used behavioural bioassays to reveal the location of specific social signals. The CHC profiles of both workers and alates varied between different body parts, and workers paid more attention to the antennae of non-nest-mate and the legs of nest-mate workers. Workers responded less aggressively to non-nest-mate workers if the CHCs on the antennae of their opponents were removed with a solvent. These data indicate that CHCs located on the antennae reveal nest-mate identity and, remarkably, that antennae both convey and receive social signals. Our approach and findings could be valuably applied to chemical signalling in other behavioural contexts, and provide insights that were otherwise obscured by including chemicals that either have no signal function or may be used in other contexts.
Antennae are among the most elaborate sensory organs in adult flies, and they provide rich information for phylogenic studies. The antennae of five out of eight species of Gasterophilus Leach (G. haemorrhoidalis (Linnaeus), G. intestinalis (De Geer), G. nasalis (Linnaeus), G. nigricornis (Loew) and G. pecorum (Fabricius)), were examined using scanning electron microscopy. The general morphology, including distribution, type, size, and ultrastructure of antennal sensilla were presented, and the definition of auriculate sensilla and sensory pits were updated and clarified. Eighteen antennal characters were selected to construct the first species-level phylogeny of this genus. The monophyly of Gasterophilus was supported by the presence of coeloconic sensilla III on the antennal arista. The species-level cladogram showed G. pecorum branching off at the base, and the remaining species forming the topology (G. intestinalis+ (G. haemorrhoidalis+ (G. nasalis+ G. nigricornis))). Our research shows the importance of the antennal ultrastructure as a reliable source for phylogenetic analysis.
Abstract:We analyze the multicast performance over spectrum elastic optical networks. Results demonstrate the flexible spectrum allocation provides lower blocking probability for multicast compared to that in ITU-T grid-based WDM networks.
The elaborate bipectinate antennae of male moths are thought to increase their sensitivity to female sex pheromones, and so should be favoured by selection. Yet simple filamentous antennae are the most common structure among moths. The stereotypic arrangements of scales on the surface of antennae may resolve this paradox. We use computational fluid dynamics techniques to model how scales on the filamentous antennae of moths affect the passage of different particles in the airflow across the flagellum in both small and large moths. We found that the scales provide an effective solution to improve the efficacy of filamentous antennae, by increasing the concentration of nanoparticles, which resemble pheromones, around the antennae. The smaller moths have a greater increase in antennal efficiency than larger moths. The scales also divert microparticles, which resemble dust, away from the antennal surface, thereby reducing contamination. The positive correlations between antennal scale angles and sensilla number across Heliozelidae moths are consistent with the predictions of our model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.