It remains unclear whether and how cardiomyocytes contribute to the inflammation in chronic heart failure (CHF). We recently reviewed the capacity of cardiomyocytes to initiate inflammation, by means of expressing certain immune receptors such as toll‐like receptors (TLRs) that respond to pathogen‐ and damage‐associated molecular patterns (PAMP and DAMP). Previous studies observed TLR4‐mediated inflammation within days of myocardial infarction (MI). This study examined TLR4 expression and function in cardiomyocytes of failing hearts after 4 weeks of MI in rats. The increases of TLR4 mRNA and proteins, as well as inflammatory cytokine production, were observed in both the infarct and remote myocardium. Enhanced immunostaining for TLR4 was observed in cardiomyocytes but not infiltrating leucocytes. The injection of lentivirus shRNA against TLR4 into the infarcted heart decreased inflammatory cytokine production and improved heart function in vivo. Accordingly, in cardiomyocytes isolated from CHF hearts, increases of TLR4 mRNA and proteins were detected. More robust binding of TLR4 with lipopolysaccharide (LPS), a PAMP ligand for TLR4, and heat shock protein 60 (HSP60), a DAMP ligand for TLR4, was observed in CHF cardiomyocytes under a confocal microscope. The maximum binding capacity (Bmax) of TLR4 was increased for LPS and HSP60, whereas the binding affinity (Kd) was not significantly changed. Furthermore, both LPS and HSP60 induced more robust production of inflammatory cytokines in CHF cardiomyocytes, which was reduced by TLR4‐blocking antibodies. We conclude that the expression, ligand‐binding capacity and pro‐inflammatory function of cardiomyocyte TLR4 are up‐regulated after long‐term MI, which promote inflammation and exacerbate heart failure.
The transcriptional factor Sox2 and epidermal growth factor receptor (Egfr)-mediated signaling are both required for self-renewal of neural precursor cells (NPCs). However, the mechanism by which these factors coordinately regulate this process is largely unknown. Here we show that Egfr-mediated signaling promotes Sox2 expression, which in turn binds to the Egfr promoter and directly upregulates Egfr expression. Knockdown of Sox2 by RNA interference downregulates Egfr expression and attenuates colony formation of NPCs, whereas overexpression of Sox2 elevates Egfr expression and promotes NPC selfrenewal. Moreover, the effect of Sox2 on NPC self-renewal is completely inhibited by AG1478, a specific inhibitor for Egfr; it is also inhibited by LY294002 and U0126, selective antagonists for phosphatidylinositol 3-kinase (PI3K) and extracellular signal-regulated kinase (Erk1/2), respectively. Collectively, we conclude that NPC self-renewal is enhanced through a novel cellular feedback loop with mutual regulation of Egfr and Sox2. STEM CELLS 2010;28:279-286 Disclosure of potential conflicts of interest is found at the end of this article.
Severe acute respiratory syndrome (SARS) is a highly contagious and sometimes a lethal disease, which spread over five continents in 2002-2003. Laboratory analysis showed that the etiologic agent for SARS is a new type of coronavirus. Currently, there is no specific treatment for this disease. RNA interference (RNAi) is a recently discovered antiviral mechanism in plant and animal cells that induces a specific degradation of double-stranded RNA. Here, we provide evidences that RNAi targeting at coronavirus RNA-dependent RNA polymerase (RDRP) using short hairpin RNA (shRNA) expression plasmids can specifically inhibit expression of extraneous coronavirus RDRP in 293 and HeLa cells. Moreover, this construct significantly reduced the plaque formation of SARS coronaviruses in Vero-E6 cells. The data may suggest a new approach for treatment of SARS patients.
Toll‐like receptors (TLRs) are essential immunoreceptors involved in host defence against invading microbes. Recent studies indicate that certain TLRs activate immunological autophagy to eliminate microbes. It remains unknown whether TLRs regulate autophagy to play a role in the heart. This study examined this question. The activation of TLR3 in cultured cardiomyocytes was observed to increase protein levels of autophagic components, including LC3‐II, a specific marker for autophagy induction, and p62/SQSTM1, an autophagy receptor normally degraded in the final step of autophagy. The results of transfection with a tandem mRFP‐GFP‐LC3 adenovirus and use of an autophagic flux inhibitor chloroquine both suggested that TLR3 in cardiomyocytes promotes autophagy induction without affecting autophagic flux. Gene‐knockdown experiments showed that the TRIF‐dependent pathway mediated the autophagic effect of TLR3. In the mouse model of chronic myocardial infarction, persistent autophagy was observed, concomitant with up‐regulated TLR3 expression and increased TLR3‐Trif signalling. Germline knockout (KO) of TLR3 inhibited autophagy, reduced infarct size, attenuated heart failure and improved survival. These protective effects were abolished by in vivo administration of an autophagy inducer rapamycin. Similar to the results obtained in cultured cardiomyocytes, TLR3‐KO did not prevent autophagic flux in mouse heart. Additionally, this study failed to detect the involvement of inflammation in TLR3‐KO‐derived protection, as wild‐type and TLR3‐KO hearts were comparable in inflammatory activity. It is concluded that up‐regulated TLR3 expression and signalling contributes to persistent autophagy following MI, which promotes heart failure and lethality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.