Background: Styrax tonkinensis (Pierre) Craib ex Hartwich has great potential as a woody biodiesel species having seed kernels with high oil content, excellent fatty acid composition and good fuel properties. However, no transcriptome information is available on the molecular regulatory mechanism of oil accumulation in developing S. tonkinensis kernels. Results: The dynamic patterns of oil content and fatty acid composition at 11 time points from 50 to 150 days after flowering (DAF) were analyzed. The percent oil content showed an up-down-up pattern, with yield and degree of unsaturation peaking on or after 140 DAF. Four time points (50, 70, 100, and 130 DAF) were selected for Illumina transcriptome sequencing. Approximately 73 million high quality clean reads were generated, and then assembled into 168,207 unigenes with a mean length of 854 bp. There were 5916 genes that were differentially expressed between different time points. These differentially expressed genes were grouped into 9 clusters based on their expression patterns. Expression patterns of a subset of 12 unigenes were confirmed by qRT-PCR. Based on their functional annotation through the Basic Local Alignment Search Tool and publicly available protein databases, specific unigenes encoding key enzymes, transmembrane transporters, and transcription factors associated with oil accumulation were determined. Three main patterns of expression were evident. Most unigenes peaked at 70 DAF, coincident with a rapid increase in oil content during kernel development. Unigenes with high expression at 50 DAF were associated with plastid formation and earlier stages of oil synthesis, including pyruvate and acetyl-CoA formation. Unigenes associated with triacylglycerol biosynthesis and oil body development peaked at 100 or 130 DAF.
Ginkgo biloba, a dioecious plant known as a living fossil, is an ancient gymnosperm that stands distinct from other gymnosperms and angiosperms. Ginkgo biloba var. epiphylla (G. biloba var. epiphylla), with ovules borne on the leaf blade, is an unusual germplasm derived from G. biloba. MicroRNAs (miRNAs) are post-transcriptional gene regulators that play critical roles in diverse biological and metabolic processes. Currently, little is known about the miRNAs involved in the key stage of partly epiphyllous ovule germination in G. biloba var. epiphylla. Two small RNA libraries constructed from epiphyllous ovule leaves and normal leaves of G. biloba var. epiphylla were sequenced on an Illumina/Solexa platform. A total of 82 miRNA sequences belonging to 23 families and 53 putative novel miRNAs were identified in the two libraries. Differential expression analysis showed that 25 conserved and 21 novel miRNAs were differentially expressed between epiphyllous ovule leaves and normal leaves. The expression patterns of partially differentially expressed miRNAs and the transcript levels of their predicted target genes were validated by quantitative real time RT-PCR. All the expression profiles of the 21 selected miRNAs were similar to those detected by Solexa deep sequencing. Additionally, the transcript levels of almost all the putative target genes of 9 selected miRNAs were opposite to those of the corresponding miRNAs. The putative target genes of the differentially expressed miRNAs were annotated with Gene Ontology terms related to reproductive process, metabolic process and responding to stimulus. This work presents a broad range of small RNA transcriptome data obtained from epiphyllous ovule and normal leaves of G. biloba var. epiphylla, which may provide insights into the miRNA-mediated regulation in the epiphyllous ovule germination process.
BackgroundStyrax tonkinensis is a great potential biofuel as the species contains seeds with a particularly high oil content. Understanding the nutrient distribution in different parts of the fruit is imperative for the development and enhancement of S. tonkinensis as a biodiesel feedstock.MethodsFrom 30 to 140 days after flowering (DAF), the development of S. tonkinensis fruit was tracked. The morphology change, nutrient content, and activity of associated enzymes in the continuum of the pericarp, seed coat, and kernel were analyzed.ResultsBetween 30 and 70 DAF, the main locus of dry matter deposition shifted from the seed coat to the kernel. The water content within the pericarp remained high throughout development, but at the end (130 DAF later) decreased rapidly. The water content within both the seed coat and the kernel consistently declined over the course of the fruit development (30–110 DAF). Between 70 and 80 DAF, the deposition centers for sugar, starch, protein, potassium, and magnesium was transferred to the kernel from either the pericarp or the seed coat. The calcium deposition center was transferred first from pericarp to the seed coat and then to the kernel before it was returned to the pericarp. The sucrose to hexose ratio in the seed coat increased between 30 and 80 DAF, correlating with the accumulation of total soluble sugar, starch, and protein. In the pericarp, the sucrose to hexose ratio peaked at 40 and 100 DAF, correlating with the reserve deposition in the following 20–30 days. After 30 DAF, the chlorophyll concentration of both the pericarp and the seed coat dropped. The maternal unit (the pericarp and the seed coat) in fruit showed a significant positive linear relationship between chlorophyll b/a and the concentration of total soluble sugar. The potassium content had significant positive correlation with starch (ρ = 0.673, p = 0.0164), oil (ρ = 0.915, p = 0.000203), and protein content (ρ = 0.814, p = 0.00128), respectively. The concentration of magnesium had significant positive correlation with starch (ρ = 0.705, p = 0.0104), oil (ρ = 0.913, p = 0.000228), and protein content (ρ = 0.896, p = 0.0000786), respectively. Calcium content had a significant correlation with soluble sugar content (ρ = 0.585, p = 0.0457).ConclusionsDuring the fruit development of S. tonkinensis, the maternal unit, that is, the pericarp and seed coat, may act a nutrient buffer storage area between the mother tree and the kernel. The stage of 70–80 DAF is an important time in the nutrient distribution in the continuum of the pericarp, seed coat, and kernel. Our results described the metabolic dynamics of the continuum of the pericarp, seed coat, and kernel and the contribution that a seed with high oil content offers to biofuel.
Background: Styrax tonkinensis is an economic tree species with high timber, medicine, oil, and ornamental value. Its seed, containing a particularly high oil content, are widely studied for their biodiesel properties by nutritional components and oil body ultrastructure. However, their comprehensive biochemical compositions have not been studied. Methods: During S. tonkinensis kernel development, we collected samples from four time points for metabolite profiling and classification through gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry. Results: A total of 187 and 1556 metabolites were obtained, respectively. All of the metabolites were grouped into 19 and 21 classes by their chemical properties and into 8 clusters based on their change trends, respectively. Among all the metabolites, carboxylic acids and derivatives, flavonoids, fatty acyls, glycerophospholipids, organooxygen compounds, prenol lipids, and steroids and steroid derivatives were the main components. Alanine, glutamine, tryptophan, tyrosine and valine were the five most abundant amino acids. Palmitic acid, stearic acid, oleic acid and linoleic acid were the four major free fatty acids. Flavans, flavonoid glycosides and o-methylated flavonoids were the three major flavonoids. The differential metabolites distributions between different time points were identified. A pathway enrichment was performed, which was mainly focused on three groups, amino acids metabolism, carbon flow from sucrose to lipid and secondary metabolites biosynthesis. Conclusions: It’s the first time to analyze the metabolite fingerprinting for developing S. tonkinensis kernels and identify varied kinds of flavonoids. We performed metabolite profiling, classification and pathway enrichment to assess the comprehensive biochemical compositions. Our results described the change in major metabolites and main metabolic processes during S. tonkinensis kernel development and provided a variety of bases for seed applications as biofuel or medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.