Andai therapy is a traditional therapy combining body, mind, and language with Mongolian characteristics. In the form of singing and dancing, it is widely popular among people of all ages in Mongolian areas of Inner Mongolia. According to Mongolian medicine, Heyi is one of the three elements of human body, and it can maintain life activities, promote blood circulation, and improve the functions of the sensory and mental consciousness. Andai therapy stimulates the whole body nerves and Heyi through music and dance, improves Heyi and blood operation, strengthens physique, improves immunity, effectively promotes physical and mental health, and plays a role in preventing and treating diseases. Objective. In this study, gas chromatography-mass spectrometry (GC-MS) was used to explore the mechanism of Andai therapy, so as to provide a new research direction for taking targeted prevention and treatment measures for diseases. Methods. Using gas chromatography-mass spectrometry (GC-MS) on all its cases baseline plasma to the targeted metabonomics testing, the differential metabolites of the experimental group (receiving Andai therapy) and control group (without receiving Andai therapy), analysis-related metabolite function, and screening of metabolites and related pathways through adjusting mechanism to explore the related factors are compared, to study the mechanism of the influence of Mongolian medical Andai therapy on the metabolism of different healthy people. Results. The differences in metabolic numbers between the experimental group and the control group are 114, such as cyclohexylamine chlorinated acid, 2,4-2 aminobutyric acid bitter almond alcohol, l-methyl inosine, 2-picolinate, and 2-hydroxy-2-glutaric acid metabolite content of the control group that are significantly higher than the experimental group, experimental group’s other substance content is significantly higher than that of the control group, and two groups’ metabolite content was obviously different. The number of differential metabolites between the female experimental group and the female control group was 119, and the number of differential metabolites between the male experimental group and the male control group was 48.
Background. Xieriga-4 decoction (XRG-4) is a classic prescription Mongolian medicine that has potent diuretic and anti-inflammatory activities. However, its functional components remain unknown. Purpose. This study aimed to identify the chemical components in XRG-4 and its metabolome in vivo. Methods. An ultra-performance liquid chromatography coupled with a quadrupole time-of-flight tandem mass spectrometry based approach was proposed to systematically profile the chemicolome and metabolome of XRG-4. Result. A total of 106 constituents were identified in XRG-4. Eighty-nine components were identified in biological samples, including 78 in urine (24 prototypes and 54 metabolites), 26 in feces (19 prototypes and 7 metabolites), and 9 in plasma (5 prototypes and 4 metabolites). In other tissues, only a few compounds, including alkaloids and iridoids, were detected. Conclusion. This comprehensive investigation of the chemical and metabolic profiles of XRG-4 provides a scientific foundation for its quality control and administration of clinically-safe medication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.