A significant broad-bandwidth near-shot-noise-limited intensity noise suppression of a single-frequency fiber laser is demonstrated based on a semiconductor optical amplifier (SOA) with optoelectronic feedback. By exploiting the gain saturation effect of the SOA and the intensity feedback loop, a maximum noise suppression of over 50 dB around the relaxation oscillation frequencies and a suppression bandwidth of up to 50 MHz are obtained. The relative intensity noise of -150 dB/Hz in the frequency range from 0.8 kHz to 50 MHz is achieved, which approaches the shot-noise limit. The obtained optical signal-to-noise ratio is more than 70 dB. This near-shot-noise-limited laser source shows important implications for the advanced fields of high-precision frequency stabilization, quantum key distribution, and gravitational wave detection.
A spectrally clean kHz-linewidth single-polarization single-frequency distributed Bragg reflector Yb-doped phosphate fiber (YPF) laser at 1120 nm (> 1100 nm) for the first time is demonstrated. By enhancing the reflectivity of output fiber Bragg grating and optimizing the length of YPF to implement the effective ASE suppression and single-longitudinal-mode long-wavelength lasing, a stable output power of over 62 mW is achieved from a 31-mm-long highly YPF with a linewidth of 5.7 kHz. The signal to noise ratio of > 67 dB, the polarization extinction ratio of > 25 dB, and the relative intensity noise of < -150 dB/Hz for the frequencies above 10.0 MHz are obtained in such single-frequency fiber laser. This narrow linewidth fiber laser is an ideal laser source to generate the coherent single-frequency 560 nm light via frequency doubling for biochemical analysis application.
A kHz-order linewidth controllable 1550 nm single-frequency fiber laser (SFFL) is demonstrated for the first time to our best knowledge. The control of the linewidth is realized by using a low-pass filtered white Gaussian noise (WGN) signal applied on a fiber stretcher in an optical feedback loop. Utilizing WGN signals with different signal amplitudes An and different cutoff frequencies fc, the linewidths are availably controlled in a wide range from 0.8 to 353 kHz. The obtained optical signal-to-noise ratio (OSNR) is more than 72.0 dB, and the relative intensity noise (RIN) at frequency greater than 40 MHz reaches -148.5 dB/Hz which approaches the shot noise limit (-152.9 dB/Hz). This kHz-order linewidth controllable SFFL is meaningful and valuable, for optimizing the receiver sensitivity and bit error rate (BER) performance of the coherent optical communication system based on high-order quadrature amplitude modulation (QAM).
An ultra-narrow linewidth full C-band tunable single-frequency linear-polarization fiber laser based on self-injection locking has been demonstrated. By the use of a tunable narrow-band fiber Fabry-Perot interferometer, the laser wavelength could be flexibly tuned from 1527 to 1563 nm with linewidths of < 700 Hz. The laser frequency noise is less than 40 dB re Hz/Hz1/2 at low frequencies (< 100 Hz) and reaches -5 dB re Hz/Hz1/2 at around 25 kHz. The measured relative intensity noise (RIN) is less than -130 dB/Hz with regard to frequencies of over 3 MHz, while the obtained linear polarization extinction ratio (LPER) is higher than 28 dB. This ultra-narrow linewidth low-noise tunable single-frequency linear-polarization fiber laser provides a promising candidate for high-order quadrature amplitude modulation (QAM) optical communication system.
Linewidth suppression mechanism of the self-injection locked single-frequency fiber laser (SFFL) is investigated theoretically and experimentally. An analytical model based on the semi-phenomenological approach is built up to characterize the optical feedback in SFFL. According to the theoretical prediction, the linewidth tends to be reduced with longer external cavity photon lifetime. Experimentally, a 200-Hz linewidth self-injection locked SFFL is achieved with 101 m long delay fiber, which agrees well with the theoretical simulation. The model provides a new perspective to understand the mechanism of linewidth reduction of self-injection locked SFFL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.