Spirulina (Artrhospira platensis) is rich in chlorophylls (CH) and is used as a potential natural additive in the food industry. In this study, the CH content was extracted from spirulina powder after ultrasound treatment. Microcapsules were then prepared at different ratios of gum Arabic (GA) and whey protein isolate (WPI) through freeze-drying to improve the chemical stability of CH. As a result, a* and C* values of the microcapsules prepared from GA:WPI ratios (3:7) were −8.94 ± 0.05 and 15.44 ± 0.08, respectively. The GA fraction increased from 1 to 9, and encapsulation efficiency (EE) of microcapsules also increased by 9.62%. Moreover, the absorption peaks of CH at 2927 and 1626 cm−1 in microcapsules emerged as a redshift detected by FT-IR. From SEM images, the morphology of microcapsules changed from broken glassy to irregular porous flake-like structures when the GA ratio increased. In addition, the coated microcapsules (GA:WPI = 3:7) showed the highest DPPH free radical scavenging activity (SADPPH) (56.38 ± 0.19) due to low moisture content and better chemical stability through thermogravimetric analysis (TGA). Conclusively, GA and WPI coacervates as the wall material may improve the stability of CH extracted from spirulina.
Aim: Thyroid cancer is the most common endocrine cancer, the incidence rate has continuously increased worldwide. However, there are still lack of effective molecular biomarkers for the diagnosis and treatment of the disease. The study was conducted to identify driver genes that may serve as potential biomarkers for the disease. Methods: The computational tools oncodriveCLUST, oncodriveFM, icages and drgap were used to detect driver genes in thyroid cancer using somatic mutations from The Cancer Genome Atlas database. Integrated analyses were performed on the driver genes using multiomics data from the TCGA database. Results: A set of 291 driver genes were identified in thyroid cancer. BRAF, NRAS, HRAS, OTUD4, EIF1AX were the top 5 frequently mutated genes in thyroid cancer. The weighted gene co-expression network analysis identified 4 coexpression modules. The modules 1-3 were significantly associated with patients’ tumor size, residual tumor, cancer stage, distant metastasis and multifocality. SEC24B, MET and ITGAL were the hub genes in the modules 1-3 respectively. Hierarchical clustering analysis of the 20 driver genes with the most frequent copy number changes revealed 3 clusters of PRAD patients. Cluster 1 tumors exhibited significantly older age, tumor size, cancer stages, and poorer prognosis than cluster 2 and 3 tumors. 16 genes were significantly associated with number of lymph nodes, tumor size and pathologic stage, such as IL7 R, IRS1, PTK2B, MAP3K3 and FGFR2. Conclusions: The set of cancer genes and subgroups of patients shed insight on the tumorigenesis of thyroid cancer and open up avenues for developing prognostic biomarkers and driver gene-targeted therapies in thyroid cancer.
Soil nitrification (microbial oxidation of ammonium to nitrate) can lead to nitrogen leaching and environmental pollution. A number of plant species are able to suppress soil nitrifiers by exuding inhibitors from roots, a process called biological nitrification inhibition (BNI). However, the BNI activity of perennial grasses in the nutrient-poor soils of Australia and the effects of BNI activity on nitrifying microbes in the rhizosphere microbiome have not been well studied. Here we evaluated the BNI capacity of bermudagrass (Cynodon dactylon L.), St. Augustinegrass (Stenotaphrum secundatum (Walt.) Kuntze), saltwater couch (Sporobolus virginicus), seashore paspalum (Paspalum vaginatum Swartz.), and kikuyu grass (Pennisetum clandestinum) compared with the known positive control, koronivia grass (Brachiaria humidicola). The microbial communities were analysed by sequencing 16S rRNA genes. St. Augustinegrass and bermudagrass showed high BNI activity, about 80 to 90% of koronivia grass. All the three grasses with stronger BNI capacities suppressed the populations of Nitrospira in the rhizosphere, a bacteria genus with a nitrite-oxidizing function, but not all of the potential ammonia-oxidizing archaea. The rhizosphere of saltwater couch and seashore paspalum exerted a weak recruitment effect on the soil microbiome. Our results demonstrate that BNI activity of perennial grasses played a vital role in modulating nitrification-associated microbial populations.
Large-aperture parabolic trough collectors (LPTCs) are recognized as one of the most promising next-generation linear-focus concentrating solar power (CSP) technologies having higher performance and lower cost. However, large apertures inevitably introduce higher wind loads and stronger inter-row interactions. In the present study, a multi-physics-coupled model is established to study the wind load effect on multiple rows of LPTCs. First, it is found that wind load fluctuates significantly in the first four rows and then decreases gradually. The first and second rows suffer the most and least damage, respectively. Because wind load effect is highly dependent on the row number, it is recommended to reinforce the strength of collectors according to their positions in the solar field. Second, the wind load reduction effectiveness of the varied focal length design, incorporated in the LPTC, is numerically validated that the stress and optical efficiency loss can be reduced by 29.1 % and 58.9 %, respectively. Finally, the optical efficiency loss is first introduced to evaluate the wind load reduction performance of different mirror gap sizes. The optimal mirror gap size is found to be dependent on the weight coefficient between the wind load reduction and the optical efficiency, which should be determined by the actual scenario. For weight coefficients of 1:1, 1:2, and 2:1, optimal mirror gap sizes of 90 mm, 30 mm, and 120 mm, respectively, are recommended for reference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.