BackgroundThe neutrophil to lymphocyte ratio (NLR) has been shown to predict short- and long-term outcomes in ischemic stroke patients. We sought to explore the temporal profile of the plasma NLR in stroke patients treated with intravenous thrombolysis (IVT) and its relationship with intracranial bleeding complications after thrombolysis.MethodsA total of 189 ischemic stroke patients were prospectively enrolled. Blood samples for leukocyte, neutrophil, and lymphocyte counts were obtained at admission and at 3–6, 12–18, and 36–48 h after IVT. Head CT was performed on admission and repeated after 36–48 h, and a CT scan was done immediately in case of clinical worsening. Hemorrhagic events were categorized as symptomatic intracranial hemorrhage (sICH) and parenchymal hematomas (PH) according to previously published criteria.ResultsAn increasing trend in the NLR was observed after stroke, and the NLR was higher in patients who developed PH or sICH at 3–6, 12–18, and 36–48 h after IVT (P < 0.01) than in those without PH or sICH. The optimal cutoff value for the serum NLR as an indicator for auxiliary diagnosis of PH and sICH was 10.59 at 12–18 h. Furthermore, the NLR obtained at 12–18-h post-treatment was independently associated with PH (adjusted odds ratio [OR] 1.14) and sICH (adjusted OR 1.14). In addition, patients with a NLR ≥10.59 had an 8.50-fold greater risk for PH (95 % confidence interval [CI] 2.69–26.89) and a 7.93-fold greater risk for sICH (95 % CI 2.25–27.99) than patients with a NLR <10.59.ConclusionsNLR is a dynamic variable, and its variation is associated with HT after thrombolysis in stroke patients.Electronic supplementary materialThe online version of this article (doi:10.1186/s12974-016-0680-x) contains supplementary material, which is available to authorized users.
Background
Functions of astrocytes in the rehabilitation after ischemic stroke, especially their impacts on inflammatory processes, remain controversial. This study uncovered two phenotypes of astrocytes, of which one was helpful, and the other harmful to anoxic neurons after brain ischemia.
Methods
We tested the levels of inflammatory factors including TNF-a, IL-6, IL-10, iNOS, IL-1beta, and CXCL10 in primary astrocytes at 0 h, 6 h, 12 h, 24 h, and 48 h after OGD, grouped the hypoxia astrocytes into iNOS-positive (iNOS(+)) and iNOS-negative (iNOS(−)) by magnetic bead sorting, and then co-cultured the two groups of cells with OGD-treated neurons for 24 h. We further verified the polarization of astrocytes in vivo by detecting the co-localization of iNOS, GFAP, and Iba-1 on MCAO brain sections. Lentivirus overexpressing LCN2 and LCN2 knockout mice (#024630. JAX, USA) were used to explore the role of LCN2 in the functional polarization of astrocytes. 7.0-T MRI scanning and the modified Neurological Severity Score (mNSS) were used to evaluate the neurological outcomes of the mice.
Results
After oxygen-glucose deprivation (OGD), iNOS mRNA expression increased to the peak at 6 h in primary astrocytes, but keep baseline expression in LCN2-knockout astrocytes. In mice with transient middle cerebral artery occlusion (tMCAO), LCN2 was proved necessary for astrocyte classical activation. In LCN2 knockout mice with MCAO, no classically activated astrocytes were detected, and smaller infarct volumes and better neurological functions were observed.
Conclusions
The results indicated a novel pattern of astrocyte activation after ischemic stroke and lipocalin-2 (LCN2) plays a key role in polarizing and activating astrocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.