With the development of artificial intelligence and integrated sensor technologies, unmanned aerial vehicles (UAVs) are more and more applied in the air combats. A bottleneck that constrains the capability of UAVs against manned vehicles is the autonomous maneuver decision, which is a very challenging problem in the short-range air combat undergoing highly dynamic and uncertain maneuvers of enemies. In this paper, an autonomous maneuver decision model is proposed for the UAV short-range air combat based on reinforcement learning, which mainly includes the aircraft motion model, one-to-one short-range air combat evaluation model and the maneuver decision model based on deep Q network (DQN). However, such model includes a high dimensional state and action space which requires huge computation load for DQN training using traditional methods. Then, a phased training method, called ''basic-confrontation'', which is based on the idea that human beings gradually learn from simple to complex is proposed to help reduce the training time while getting suboptimal but efficient results. Finally, one-to-one short-range air combats are simulated under different target maneuver policies. Simulation results show that the proposed maneuver decision model and training method can help the UAV achieve autonomous decision in the air combats and obtain an effective decision policy to defeat the opponent.
<div>Synergistic use of electrochemistry and organometallic catalysis has emerged as a powerful tool for site-selective C–H functionalization, yet this type of transformation has thus far mainly been limited to arene C–H functionalization. Herein, we report the development of electrochemical vinylic C–H functionalization of acrylic acids with alkynes. In this reaction an iridium catalyst enables C–H/O–H functionalization for alkyne annulation, affording a-pyrones with good to excellent yields in an undivided cell. Preliminary mechanistic studies show that anodic oxidation is crucial for releasing the product and regeneration of a Ir(III) intermediate from a diene-Ir(I)complex, which is a coordinatively saturated, 18-electron complex. Importantly, common chemical oxidants such as Ag(I) or Cu(II) did not give significant amounts of the desired product in the absence of electrical current under otherwise identical conditions.</div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.