High-efficiency and rapid removal of trace organic micropollutants (OMPs) is vital to the safety of drinking water. It remains a huge challenge for conventional materials because of their weak affinity...
The rapid and effective removal of organic micropollutants (OMPs) from water remains a huge challenge for traditional water treatment techniques. Compared with powder adsorbents such as polymers and nanomaterials, the free-standing adsorptive membrane is possible for large-scale applications and shows promise in removing OMPs. Herein, inspired by aquatic plants, a novel free-standing adsorptive membrane (NPPM) with high water flux, strong adsorption affinity, and excellent reproducibility was prepared by one-step UV surface grafting. N-Vinylformamide (NVF) was employed to introduce multiple hydrophilic and hydrogen bonding sites on the surface of commercial polypropylene fiber membranes (PPM). The NPPM exhibits excellent water permeability and ultrahigh water flux (up to 40 000 L/(m 2 h)) and could continuously remove a broad spectrum of OMPs from water. Its adsorption performance is 5−100 times higher than that of PPM and commercial membranes. Even in natural water sources such as tap water and river water, the NPPM shows unchanged adsorption performance and high OMPs removal efficiency (>95%). Notably, the NPPM has excellent regeneration performance and can be regenerated by hot water elution, which provides an environmentally friendly regeneration method without involving any organic solvent. Moreover, the synergy between hydrogen bonding and hydrophobic interaction is revealed, and the hydrophobic interaction provided by the hydrophobic substrate is proved to play a fundamental role in OMPs adsorption. The strong hydrogen bonds between the grafts and the OMPs are demonstrated by variable-temperature FTIR spectroscopy (vt-FTIR), 13 C nuclear magnetic resonance spectroscopy ( 13 C NMR), and simulation calculations. The strong hydrogen bonds could increase the enthalpy change and enhance the adsorption affinity, so the NPPM has a strong adsorption affinity, which is 100 times that of similar adsorption membranes. This study not only presents an adsorptive membrane with great commercial potential in the rapid remediation of a water source but also opens a pathway to develop an adsorptive membrane with high water flux and strong adsorption affinity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.