As an effective tool for colorectal lesion detection, it is still difficult to avoid the phenomenon of missed and false detection when using white-light endoscopy. In order to improve the lesion detection rate of colorectal cancer patients, this paper proposes a real-time lesion diagnosis model (YOLOv5x-CG) based on YOLOv5 improvement. In this diagnostic model, colorectal lesions were subdivided into three categories: micropolyps, adenomas, and cancer. In the course of convolutional network training, Mosaic data enhancement strategy was used to improve the detection rate of small target polyps. At the same time, coordinate attention (CA) mechanism was introduced to take into account channel and location information in the network, so as to realize the effective extraction of three kinds of pathological features. The Ghost module was also used to generate more feature maps through linear processing, which reduces the stress of learning model parameters and speeds up detection. The experimental results show that the lesion diagnosis model proposed in this paper has a more rapid and accurate lesion detection ability, and the AP value of polyps, adenomas, and cancer is 0.923, 0.955, and 0.87, and mAP@50 is 0.916.
Colorectal cancer has a high incidence rate in all countries around the world, and the survival rate of patients is improved by early detection. With the development of object detection technology based on deep learning, computer-aided diagnosis of colonoscopy medical images becomes a reality, which can effectively reduce the occurrence of missed diagnosis and misdiagnosis. In medical image recognition, the assumption that training samples follow independent identical distribution (IID) is the key to the high accuracy of deep learning. However, the classification of medical images is unbalanced in most cases. This paper proposes a new loss function named the double-balanced loss function for the deep learning model, to improve the impact of datasets on classification accuracy. It introduces the effects of sample size and sample difficulty to the loss calculation and deals with both sample size imbalance and sample difficulty imbalance. And it combines with deep learning to build the medical diagnosis model for colorectal cancer. Experimentally verified by three colorectal white-light endoscopic image datasets, the double-balanced loss function proposed in this paper has better performance on the imbalance classification problem of colorectal medical images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.