C/EBP homologous protein (Chop) has been shown to have altered expression in patients with idiopathic pulmonary fibrosis (IPF), but its exact role in IPF pathoaetiology has not been fully addressed. Studies conducted in patients with IPF and Chop(-/-) mice have dissected the role of Chop and endoplasmic reticulum (ER) stress in pulmonary fibrosis pathogenesis. The effect of Chop deficiency on macrophage polarization and related signalling pathways were investigated to identify the underlying mechanisms. Patients with IPF and mice with bleomycin (BLM)-induced pulmonary fibrosis were affected by the altered Chop expression and ER stress. In particular, Chop deficiency protected mice against BLM-induced lung injury and fibrosis. Loss of Chop significantly attenuated transforming growth factor β (TGF-β) production and reduced M2 macrophage infiltration in the lung following BLM induction. Mechanistic studies showed that Chop deficiency repressed the M2 program in macrophages, which then attenuated TGF-β secretion. Specifically, loss of Chop promoted the expression of suppressors of cytokine signaling 1 and suppressors of cytokine signaling 3, and through which Chop deficiency repressed signal transducer and activator of transcription 6/peroxisome proliferator-activated receptor gamma signaling, the essential pathway for the M2 program in macrophages. Together, our data support the idea that Chop and ER stress are implicated in IPF pathoaetiology, involving at least the induction and differentiation of M2 macrophages.
Pathogenic biofilms protected by extracellular polymeric substances frequently compromise the efficiency of antibacterial drugs and severely threaten human health. In this study, we designed a multi-stimuli-responsive magnetic supramolecular nanoplatform to co-deliver large and low molecular weight drugs for synergistic eradication of pathogenic biofilms. This co-delivery platform was composed of mesoporous silica nanoparticles (MSNs) with large pores (MSNLP) capped by β-cyclodextrin (β-CD)-modified polyethylenimine (PEICD) and adamantane (ADA)-decorated MSNs containing a magnetic core (MagNP@MSNA) capped by cucurbit[6]uril (CB[6]). The host MSNs (H, MSNLP@PEICD) and the guest MSNs (G, MagNP@MSNA-CB[6]) spontaneously form coassemblies (H+G), based on the host–guest interactions between β-CD and ADA. Under the stimulus of pathogen cells together with heating by an alternating magnetic field (AMF), the supramolecular coassemblies released both the large molecular weight antimicrobial peptide melittin (MEL) and the low molecular weight antibiotic ofloxacin (OFL) with high efficiency. As compared to free drugs (MEL and OFL) or unattached MSNs (H or G), the drug-loading H+G coassemblies (H-MEL+G-OFL) exhibited much higher capacity for biofilm eradication, thoroughly removing biofilm biomass and killing the pathogenic cells, and displaying no obvious toxicity to mammalian cells. This strong antibiofilm capacity was severely decreased when the host and guest components were prevented from coassembling but administered simultaneously, revealing the critical role of the supramolecular assembly in biofilm removal. Moreover, an in vivo implantation model showed that the coassemblies eradicated the pathogenic biofilms from the implants, preventing host tissue damage and inflammation. Therefore, the co-delivering and multi-stimuli-responsive nanocarriers could overcome the anti-infection difficulties during treatment of infections because of protective biofilms.
A two-stage mediated near-infrared (NIR) emissive supramolecular assembly for lysosome-targeted cell imaging is presented. 4,4'-Anthracene-9,10-diylbis(ethene-2,1-diyl))bis(1-ethylpyridin-1-ium) bromide (ENDT) was synthesized as an organic dye with weak fluorescence emission at 625 nm. When ENDT complexes with cucurbit[8]uril (CB[8]), this binary supramolecular complex assembles into nanorods with a near-infrared fluorescence emission (655 nm) and fluorescence enhancement as the first stage. Such supramolecular complexes interact with lower-rim dodecyl-modified sulfonatocalix[4]arene (SC4AD) to form nanoparticles for further fluorescence enhancement as the second stage. Furthermore, based on a co-staining experiment with LysoTracker Blue, such nanoparticles can be applied in NIR lysosome-targeted cell imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.