The finite deformation of rubber under multiaxial stress will finally result in its fatigue failure. The ability to predict the effects of complex strain histories on fatigue life is a critical need. The cracking energy density (CED) distribution characteristics in the finite deformation and rubber fatigue life estimated by the CED criterion are investigated. Then the influences of the crack orientation angle u and the principal stretch ratio k on the relationship between CED and strain energy density (SED) are obtained. Finally, the results are used for predicting the fatigue life of rubber material and are compared to experimental values. The results indicate that the ratios of the predicted lives based on the CED damage parameter and measured lives are within two times scatter factor and that of the predicted lives based on the SED damage parameter and measured lives are greatly influenced by the crack orientation angle u. The rubber fatigue life has great relationship with the angle of the crack plane normal vector and the first principal stretch direction.
In the dynamic point-to-point communication, to track and aim at antenna fast and accurately is the guarantee of high quality communication signal. In order to solve the problem of antenna alignment, we used the least square method (LSM) to fit the optimal level signal value (LSV) point which is based on coordinate coarse tracking alignment and matrix scanning strategy to find the LSV in this paper. Antenna is driven by two-dimensional turntable (azimuth and elevation angle (AE)): the two-dimensional turntable is decomposed into two independent one-dimensional turntables, and the LSV in AE direction are obtained by scanning, respectively. The optimal LSV point of two-dimensional turntable can be find by combing optimal LSV point of two independent one-dimensional turntables. The method has the advantages of high precision and easy implementation and can meet the requirement of fast and accurately alignment in dynamic point-to-point communication antenna engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.