Self‐healing materials are capable of spontaneously repairing themselves at damaging sites without additional adhesives. They are important functional materials with wide applications in actuators, shape memorizing materials, smart coatings, and medical treatments, etc. Herein, this study reports the self‐healing of graphene oxide (GO) functional architectures and devices with the assistance of moisture. These GO architectures can completely restore their mechanical‐performance (e.g., compressibility, flexibility, and strength) after healing their broken sites using a little amount of water moisture. On the basis of this effective moisture‐triggered self‐healing process, this study develops GO smart actuators (e.g., bendable actuator, biomimetic walker, rotatable fiber motor) and sensors with self‐healing ability. This work provides a new pathway for the development of self‐healing materials for their applications in multidimensional spaces and functional devices.
The microelectronics industry is pushing the fundamental limit on the physical size of individual elements to produce faster and more powerful integrated chips. These chips have nanoscale features that dissipate power resulting in nanoscale hotspots leading to device failures. To understand the reliability impact of the hotspots, the device needs to be tested under the actual operating conditions. Therefore, the development of high-resolution thermometry techniques is required to understand the heat dissipation processes during the device operation. Recently, several thermometry techniques have been proposed, such as radiation thermometry, thermocouple based contact thermometry, scanning thermal microscopy, scanning transmission electron microscopy and transition based threshold thermometers. However, most of these techniques have limitations including the need for extensive calibration, perturbation of the actual device temperature, low throughput, and the use of ultra-high vacuum. Here, we present a facile technique, which uses a thin film contact thermometer based on the phase change material $$Ge_2 Sb_2 Te_5$$
G
e
2
S
b
2
T
e
5
, to precisely map thermal contours from the nanoscale to the microscale. $$Ge_2 Sb_2 Te_5$$
G
e
2
S
b
2
T
e
5
undergoes a crystalline transition at $$\hbox {T}_{{g}}$$
T
g
with large changes in its electric conductivity, optical reflectivity and density. Using this approach, we map the surface temperature of a nanowire and an embedded micro-heater on the same chip where the scales of the temperature contours differ by three orders of magnitude. The spatial resolution can be as high as 20 nanometers thanks to the continuous nature of the thin film.
Understanding nanoscale heat transfer at the head–disk interface (HDI) is necessary for thermal management of hard disk drives (HDDs), especially for heat-assisted magnetic recording and microwave-assisted magnetic recording. To accurately model the head temperature profile in HDDs, it is imperative to employ a spacing-dependent heat transfer coefficient due to the combined effects of pressurized air conduction and wave-based phonon conduction. Moreover, while flying at near-contact, the fly height and heat transfer are affected by adhesion/contact forces in the HDI. In this study, we develop a numerical model to predict the temperature profile and the fly height for a flying slider over a rotating disk. We compare our simulations with touchdown experiments performed with a flying Thermal Fly-Height Control (TFC) slider with a near-surface Embedded Contact Sensor (ECS), which helps us to detect the temperature change. We incorporate the effects of disk temperature rise, adhesion/contact forces, air and phonon conduction heat transfer, and friction heating in our model. As the head approaches the disk with increasing TFC power, enhanced nanoscale heat transfer leads to a drop in the ECS temperature change vs TFC power curve. We find that the exclusion of the disk temperature rise causes the simulation to overestimate the ECS cooling drop. The incorporation of adhesion force results in a steeper ECS cooling drop. The addition of phonon conduction in the model causes a larger ECS cooling drop. The simulation with friction heating predicts a larger ECS temperature slope beyond contact. The simulation with these features agrees with the experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.