Bad sitting posture is harmful to human health. Intelligent sitting posture recognition algorithm can remind people to correct their sitting posture. In this paper, a sitting pressure image acquisition system was designed. With the system, we innovatively proposed a hip positioning algorithm based on hip templates. The average deviation of the algorithm for hip positioning is 1.306 pixels (the equivalent distance is 1.50 cm), and the proportion of the maximum positioning deviation less than three pixels is 94.1%. Statistics show that the algorithm works relatively well for different subjects. At the same time, the algorithm can not only effectively locate the hip position with a small rotation angle (0°–15°), but also has certain adaptability to the sitting posture with a medium rotation angle (15°–30°) or a large rotation angle (30°–45°). Using the hip positioning algorithm, the regional pressure values of the left hip, right hip and caudal vertebrae are effectively extracted as the features, and support vector machine (SVM) with polynomial kernel is used to classify the four types of sitting postures, with a classification accuracy of up to 89.6%.
Ultraviolet Visible (UV-Vis) spectroscopy detection technology has been widely used in quantitative analysis for its advantages of rapid and non-destructive determination. However, the difference of optical hardware severely restricts the development of spectral technology. Model transfer is one of the effective methods to establish models on different instruments. Due to the high dimension and nonlinearity of spectral data, the existing methods cannot effectively extract the hidden differences in spectra of different spectrometers. Thus, based on the necessity of spectral calibration model transfer between the traditional large spectrometer and the micro-spectrometer, a novel model transfer method based on improved deep autoencoder is proposed to realize spectral reconstruction between different spectrometers. Firstly, two autoencoders are used to train the spectral data of the master and slave instrument, respectively. Then, the hidden variable constraint is added to enhance the feature representation of the autoencoder, which makes the two hidden variables equal. Combined with a Bayesian optimization algorithm for the objective function, the transfer accuracy coefficient is proposed to characterize the model transfer performance. The experimental results show that after model transfer, the spectrum of the slave spectrometer is basically coincident with the master spectrometer and the wavelength shift is eliminated. Compared with the two commonly used direct standardization (DS) and piecewise direct standardization (PDS) algorithms, the average transfer accuracy coefficient of the proposed method is improved by 45.11% and 22.38%, respectively, when there are nonlinear differences between different spectrometers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.