In recent years, the proliferation of coronavirus disease has profoundly affected the world. The vitality of urban space is difficult to recover in the short term. Therefore, in the early stage of human-to-human transmission of the epidemic, we need to determine the potential urban agglomeration space as soon as possible, the timely find of hidden danger areas, and carry out spatial optimization to prevent the further spread of the epidemic. This becomes the urgent problem at the moment. Jinan is the capital city of Shandong Province, and the mega-city of China. The study is focused on the main urban area within the bypass. This study used spatial data methods such as spatial grammar and GIS technology. First, we analyzed the spatial topological properties of urban road network during the epidemic. Then, we carried out spatial autocorrelation analysis on the topological attributes to get the shape of urban spatial clustering layout during the epidemic. Finally, the thesis crawled through various types of infrastructure points-of-interest and conducted nuclear density analysis to get the dynamic trend of urban space in Jinan. The research results showed that there is significant space for agglomeration in the main urban area of Jinan. The areas with strong agglomeration are basically located in tourism areas, school areas, business areas, living circle areas of residential communities in Licheng and Lixia districts, transportation hub areas in Tianqiao District, and high-tech industrial areas in Lixia District. Topography, water body, greening, and parks could effectively reduce the concentration of human flow, and are important areas to relieve the potential abnormal epidemic. This study provided a new method for detecting epidemic prevention and control areas, optimizing urban space layout and formulating prevention and control strategies in the early stage of human-to-human epidemic transmission and lack of case surveillance data and control measures.
With the global spread of various human-to-human epidemics, public health issues have become a focus of attention. Therefore, it is of great importance to improve the quantitative risk assessment of the construction of resilient cities in terms of epidemic disasters. Starting with the dimensions of social activities and material space, this paper took Qingdao, China, with a population of 5 million, as an example, and took its seven municipal districts as the research scope. In this paper, five risk factors, including the Population density index, Night light index, Closeness index of roads, Betweenness index of roads and Functional mixed nuclear density index were selected for weighted superposition analysis. We conducted a quantitative assessment of the spatial risk of epidemic disaster so as to obtain the classification and spatial structure of the epidemic disaster risk intensity. The results show that: ① The roads with a large traffic flow are most likely to lead to the risk of urban spatial agglomeration, and the areas with a large population density and large mixture of infrastructure functions are also important factors causing the risk of epidemic agglomeration. ② The analysis results regarding the population, commerce, public services, transportation, residence, industry, green space and other functional places can reflect the high-risk areas for epidemic diseases with different natures of transmission. ③ The risk intensity of epidemic disasters is divided into five risk grade areas. Among them, the spatial structure of epidemic disasters, composed of the first-level risk areas, is characterized by “one main area, four secondary areas, one belt and multiple points” and has the characteristics of spatial diffusion. ④ Catering, shopping, life services, hospitals, schools and transportation functional places are more likely to cause crowd gathering. The management of these places should be focused on prevention and control. At the same time, medical facilities should be established at fixed points in all high-risk areas to ensure the full coverage of services. In general, the quantitative assessment of the spatial risk of major epidemic disasters improves the disaster risk assessment system in the construction of resilient cities. It also focuses on risk assessment for public health events. It is helpful to accurately locate the agglomeration risk areas and epidemic transmission paths that are prone to outbreak or cause epidemic transmission in cities so as to assist the relevant practitioners in containing the epidemic from the initial stage of transmission in a timely manner and prevent the further spread of the epidemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.