Highly efficient heat exchange tubes are special tube shapes that are widely used in heat exchangers to enhance heat transfer. In this study, experimental measurements and numerical simulations were carried out on two types of highly efficient heat exchange tubes, namely, spirally grooved tubes and converging–diverging tubes, to investigate changes in their mechanical properties after rolling from smooth tubes. It was found that, unlike the smooth tubes, all axial, circumferential, and radial stresses exist at the two types of tubes under axial loading, and the maximum axial stress is much larger than that at the smooth tubes. Compared to the smooth tubes, the yield strength and ultimate strength of the highly efficient heat exchange tubes increase while the axial elastic stiffness decreases. Although the capability of resisting fatigue fracture of the highly efficient heat exchange tubes is less than that of smooth tubes, they still meet the requirements of the heat exchanger under fatigue loading. Axial stress concentration factors and stiffness equivalent factors for the highly efficient heat exchange tubes are regressed as a function of the structural parameters for engineering applications.
A quench boiler is the key equipment in ethylene production for the rapid cooling of high-temperature cracking gas. In the boiler, heat transfer is occurs between the hot cracking gas passing through the inner heat exchange tubes with an average temperature of 385 °C and cold water (or boiler water) passing through the inner heat exchange tubes with an average temperature of 350 °C. Required for double-pipe heat transfer, special tubesheets formed by welding flat-round tubes side by side are difficult to design, as no suitable design code is available. The thermal expansion difference between the inner heat exchange tubes and the jacketed tubes could lead to high thermal stress on the tubesheet. In this study, we investigated the effects of pretension or prestretching of the heat exchange tubes on stress distribution and strength assessment of the flat-round tubesheet in a quench boiler under two dangerous load conditions. Results show that without prestretching the heat exchange tubes, the flat-round tubesheet cannot pass the strength assessment. Prestretching the heat exchange tubes is necessary, and a pretension of 9 mm is most suitable. The magnitude of the pretension of the heat exchange tubes should be determined based on the thermal expansion difference between the inner heat exchange tubes and the jacketed tubes, with consideration of the strength improvement of the flat-round tubesheet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.