The destruction of periodontal tissue is a crucial problem faced by oral diseases, such as periodontitis and tooth avulsion. However, regenerating periodontal tissue is a huge clinical challenge because of the structural complexity and the poor self-healing capability of periodontal tissue. Tissue engineering has led to advances in periodontal regeneration, however, the source of exogenous seed cells is still a major obstacle. With the improvement of in situ tissue engineering and the exploration of stem cell niches, the homing of endogenous stem cells may bring promising treatment strategies in the future. In recent years, the applications of endogenous cell homing have been widely reported in clinical tissue repair, periodontal regeneration, and cell therapy prospects. Stimulating strategies have also been widely studied, such as the combination of cytokines and chemokines, and the implantation of tissue-engineered scaffolds. In the future, more research needs to be done to improve the efficiency of endogenous cell homing and expand the range of clinical applications.
Chitooligosaccharides (COS) has an effect to reduce blood glucose and blood lipids and is used in adjuvant therapy for diabetes mellitus (DM), which is closely associated with gut microbiota. Therefore, it is worthy investigating whether COS exerts its effect via the gut microbiota. In this paper, we studied the response of gut microbiota in diabetic mice to COS, using the high-throughput sequencing technology. We found that COS had significant effect on the community structure of gut microbiota in mice though it had no significant effect on the α-diversity of gut microbiota; the abundance of Actinobacteria was increased significantly in the gut tract of mice fed with COS (P < 0.05); the abundance of Corynebacteriaceae significantly increased in diabetic mice fed with COS (P < 0.05); at OTU level, the abundance of 13 OTUs of Bacteroidales S24-7 group decreased significantly (P < 0.05) while that of Lachnospiraceae increased significantly (P < 0.05) in diabetic mice intragastrically administered with COS. The results of our experiment suggest that the effect of COS to reduce blood glucose in diabetic mice might be produced by decreasing the abundance of Bacteroidetes and increasing that of Firmicutes and Actinobacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.