Introns are well known for their high variation not only in length but also in base sequence. The evolution of intron sequences has aroused broad interest in the past decades. However, very little is known about the evolutionary pattern of introns due to the lack of efficient analytical method. In this study, we designed 2 evolutionary models, that is, mutation-and-deletion (MD) and mutation-and-insertion (MI), to simulate intron evolution using randomly generated and mutated bases by referencing to the phylogenetic tree constructed using 14 chordate introns from TF4 (transcription factor–like protein 4) gene. A comparison of attributes between model-generated sequences and chordate introns showed that the MD model with proper parameter settings could generate sequences that have attributes matchable to chordate introns, whereas the MI model with any parameter settings failed in doing so. These data suggest that the surveyed chordate introns have evolved from a long ancestral sequence through gradual reduction in length. The established methodology provides an effective measure to study the evolutionary pattern of intron sequences from organisms of various taxonomic groups. (C++ scripts of MD and MI models are available upon request.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.