Recent studies demonstrated that long non-coding RNAs (lncRNAs) have a critical role in the regulation of cancer progression and metastasis. However, little is known whether lncRNA regulated nasopharyngeal carcinoma (NPC) cell radioresistance. In the present study, we found that MALAT1 was significantly upregulated in NPC cell lines and tissues. Knockdown of MALAT1 could sensitize NPC cells to radiation both in vitro and in vivo. Interestingly, we found that MALAT1 regulated radioresistance by modulating cancer stem cell (CSC) activity. Furthermore, we found that there was reciprocal repression between MALAT1 and miR-1, and slug was identified as a downstream target of miR-1. Taking these observations into consideration, we proposed that MALAT1 regulated CSC activity and radioresistance by modulating miR-1/slug axis, which indicated that MALAT1 could act as a therapeutic target for NPC patients.
Background
Campylobacter species are the major food-borne pathogens which could cause bacterial gastroenteritis in humans. Contaminated chicken products have been recognized as the primary vehicles of Campylobacter transmission to human beings. In this study, the prevalence of Campylobacter in retail chicken meat in Central China was investigated, and the isolates were further characterized using molecular approaches and tested for antibiotic resistance.ResultsA total of 302 chicken samples purchased from April 2014 to April 2015 were tested. The level of Campylobacter contamination was enumerated by most probable number-PCR (MPN-PCR). The Campylobacter positive rate was 17.2% (52/302), with bacterial count varying from 3.6 to 360 MPN/g in positive samples. A total of 52 Campylobacter strains, including 40 Campylobacter jejuni and 12 Campylobacter coli, were isolated from the positive samples. To examine the genetic diversity of the isolates, multilocus sequence typing (MLST) technology was applied, which identified 23 sequence types (STs) belonging to seven clonal complexes (CCs) and unassigned. Among them, the dominant CCs of C. jejuni included CC-353 and CC-464, and the dominant CCs of C. coli were CC-828 and CC-1150. Antibiotic resistance analysis showed that all of the isolates were resistant to norfloxacin and ciprofloxacin. 23 virulence-associated genes were tested in the isolates, which showed that the number of virulence-associated genes detected in the C. jejuni isolates ranged from 16 to 21, while in most of the C. coli isolates ranged from 12 to 16. Virulence-associated genes, flaA, flgB, flgE2, fliM, fliY and cadF were detected in all isolates. VirB11, however, was not detected in any of the isolates.ConclusionsTo the best of our knowledge, this is the first report on the contamination level and molecular biological features of Campylobacter strains in retail chicken meat in Central China, which showed high genetic diversity and remarkable antibiotic resistance. This study provided scientific data for the risk assessment and evaluation of Campylobacter contamination in retail chicken products.Electronic supplementary materialThe online version of this article (doi:10.1186/s13099-016-0132-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.