Current therapies for acute myeloid leukemia (AML) are largely ineffective, and AML patients may benefit from targeted immunotherapy approaches. MGD006 is a bispecific CD3xCD123 dual-affinity re-targeting (DART) molecule that binds T lymphocytes and cells expressing CD123, an antigen up-regulated in several hematological malignancies including AML. MGD006 mediates blast killing in AML samples, together with concomitant activation and expansion of residual T cells. MGD006 is designed to be rapidly cleared, and therefore requires continuous delivery. In a mouse model of continuous administration, MGD006 eliminated engrafted KG-1a cells (an AML-M0 line) in human PBMC (peripheral blood mononuclear cell)-reconstituted NSG/β2m(-/-) mice at doses as low as 0.5 μg/kg per day for ~7 days. MGD006 binds to human and cynomolgus monkey antigens with similar affinities and redirects T cells from either species to kill CD123-expressing target cells. MGD006 was well tolerated in monkeys continuously infused with 0.1 μg/kg per day escalated weekly to up to 1 μg/kg per day during a 4-week period. Depletion of circulating CD123-positive cells was observed as early as 72 hours after treatment initiation and persisted throughout the infusion period. Cytokine release, observed after the first infusion, was reduced after subsequent administrations, even when the dose was escalated. T cells from animals with prolonged in vivo exposure exhibited unperturbed target cell lysis ex vivo, indicating no exhaustion. A transient decrease in red cell mass was observed, with no neutropenia or thrombocytopenia. These studies support clinical testing of MGD006 in hematological malignancies, including AML.
Background: miR-378 regulates osteoblast differentiation and participates in tumor cell self-renewal and chemo-resistance. However, the function of miR-378 in liver cancer cell migration has not been reported to date. Methods: miR-378 expression was examined using real-time quantitative PCR. HepG2 cell migration and liver cell invasion were examined using wound-healing and cell invasion assays. Additionally, HepG2 cell metastasis was analyzed in nude mice. Results: miR-378 over-expression enhances HepG2 cell proliferation, migration and liver cell invasion. Typical metastatic lesions were found in the livers of mice injected with miR-378-transfected cells, and high levels of the CMV promoter were detected in the nodules, indicating that miR-378 promoted the metastasis of the tumor cells to the liver. We also demonstrated that miR-378 down-regulated Fus expression. Conclusions: Our results suggested that miR-378 enhanced cell migration and metastasis by down-regulating Fus expression.
Background The poor prognosis of patients with ovarian cancer is mainly due to cancer progression. γ-Synuclein (SNCG) has reported as a critical player in cancer metastasis. However, its biological roles and mechanism are yet incompletely understood in ovarian cancer, especially in high-grade serous ovarian cancer (HGSOC). Methods This is a retrospective study of 312 patients with ovarian cancer at a single center between 2006 and 2016. Ovarian cancer tissues were stained by immunohistochemistry to analyze the relationship between SNCG expression and clinicopathologic factors. The clinical outcomes versus SNCG expression level were evaluated by Kaplan–Meier method and multiple Cox regression analysis. Next, systematical functional experiments were given to examine the proliferation and metastatic abilities of SNCG both in vitro and in vivo using loss- and gain- of function approaches. Furthermore, the mechanisms of SNCG overexpression were examined by human phospho-kinase array kit and western blot analysis. Results Clinically, the expression of SNCG was significantly upregulated in ovarian cancer compared with the borderline and benign tumor, normal ovary, and fallopian tube. Notably, the high level of SNCG correlated with high-risk clinicopathologic features and showed poor survival for patients with HGSOC, indicating an independent prognostic factor for these patients. Functionally, we observed that overexpression of SNCG promoted cell proliferation, tumor formation, migration, and invasion both in vitro and in vivo. Mechanistically, we identified that SNCG promoted cancer cell metastasis through activating the PI3K/AKT signaling pathway. Conclusions Our results reveal SNCG up-regulation contributes to the poor clinical outcome of patients with HGSOC and highlight the metastasis-promoting function of SNCG via activating the PI3K/Akt signaling pathway in HGSOC.
Background: Assessment of sleep only by sleep duration is not sufficient. This cross-sectional study aimed to investigate the potential association of self-reported global sleep status, which contained both qualitative and quantitative aspects, with hypertension prevalence in Chinese adults. Methods: A total of 5461 subjects (4076 of them were male) were enrolled in the current study and were divided into two groups with the age of 45 years as the cut-off value. Sleep status of all subjects was assessed using the standard Pittsburgh Sleep Quality Index (PSQI). Hypertension was defined as blood pressure ≥140/90 mmHg in the current study. Results: After adjusting for basic cardiovascular characteristics, the results of multivariate logistic regression indicated that sleep status, which was defined as the additive measurement of sleep duration and sleep quality, was associated with hypertension prevalence in males of both age groups (odds ratio (OR) = 1.11, 95% confidence interval (CI), 1.07–1.15, p < 0.05; OR = 1.12, 95% CI, 1.08–1.15, p < 0.05) and in females aged ≤45years (OR = 1.10, 95% CI, 1.02–1.18, p < 0.05). As one component of PSQI, short sleep duration was associated with hypertension prevalence only in Chinese male subjects, but this association disappeared after the further adjustment of the other components of PSQI that measured the qualitative aspect of sleep. Conclusion: Association between sleep status and hypertension prevalence in Chinese adults varied by age and sex. Sleep should be measured qualitatively and quantitatively when investigating its association with hypertension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.