Due to their potential applications in physiological monitoring, diagnosis, human prosthetics, haptic perception, and human–machine interaction, flexible tactile sensors have attracted wide research interest in recent years. Thanks to the advances in material engineering, high performance flexible tactile sensors have been obtained. Among the representative pressure sensing materials, 2D layered nanomaterials have many properties that are superior to those of bulk nanomaterials and are more suitable for high performance flexible sensors. As a class of 2D inorganic compounds in materials science, MXene has excellent electrical, mechanical, and biological compatibility. MXene‐based composites have proven to be promising candidates for flexible tactile sensors due to their excellent stretchability and metallic conductivity. Therefore, great efforts have been devoted to the development of MXene‐based composites for flexible sensor applications. In this paper, the controllable preparation and characterization of MXene are introduced. Then, the recent progresses on fabrication strategies, operating mechanisms, and device performance of MXene composite‐based flexible tactile sensors, including flexible piezoresistive sensors, capacitive sensors, piezoelectric sensors, triboelectric sensors are reviewed. After that, the applications of MXene material‐based flexible electronics in human motion monitoring, healthcare, prosthetics, and artificial intelligence are discussed. Finally, the challenges and perspectives for MXene‐based tactile sensors are summarized.
Electronic skin (E‐skin), especially the wearable sensors efficiently detect various stimuli attracted huge research interest owing to their potential applications in health monitoring and artificial intelligence. On the other hand, functional polymer composites possessing excellent properties such as light weight, good flexibility, and superior electrical performances, are promising candidates as building blocks for flexible electronics. Accordingly, tremendous efforts are devoted to the development of polymer composites with functional properties for E‐skin applications. Here, recent advances on the controlled fabrication of various fillers based functional polymer composites and their diverse applications in E‐skin are reviewed. In addition, contemporary studies on fabrication strategies, working mechanisms, and device performance for E‐skin based on the functional polymer composites are reviewed, including flexible pressure sensors, strain sensors, temperature sensors, energy harvesters, and transistors. Furthermore, the applications of functional composite based flexible electronics in healthcare and artificial intelligence are discussed. Finally, the existing challenges and opportunities for the functional composite materials based E‐skin are summarized.
Flexible sensors are the essential foundations of pressure sensing, microcomputer sensing systems, and wearable devices. The flexible tactile sensor can sense stimuli by converting external forces into electrical signals. The electrical signals are transmitted to a computer processing system for analysis, realizing real-time health monitoring and human motion detection. According to the working mechanism, tactile sensors are mainly divided into four types—piezoresistive, capacitive, piezoelectric, and triboelectric tactile sensors. Conventional silicon-based tactile sensors are often inadequate for flexible electronics due to their limited mechanical flexibility. In comparison, polymeric nanocomposites are flexible and stretchable, which makes them excellent candidates for flexible and wearable tactile sensors. Among the promising polymers, conjugated polymers (CPs), due to their unique chemical structures and electronic properties that contribute to their high electrical and mechanical conductivity, show great potential for flexible sensors and wearable devices. In this paper, we first introduce the parameters of pressure sensors. Then, we describe the operating principles of resistive, capacitive, piezoelectric, and triboelectric sensors, and review the pressure sensors based on conjugated polymer nanocomposites that were reported in recent years. After that, we introduce the performance characteristics of flexible sensors, regarding their applications in healthcare, human motion monitoring, electronic skin, wearable devices, and artificial intelligence. In addition, we summarize and compare the performances of conjugated polymer nanocomposite-based pressure sensors that were reported in recent years. Finally, we summarize the challenges and future directions of conjugated polymer nanocomposite-based sensors.
Flexible tactile sensors with high sensitivity, a broad pressure detection range, and high resolution are highly desired for the applications of health monitoring, robots, and the human–machine interface. However, it is still challenging to realize a tactile sensor with high sensitivity and resolution over a wide detection range. Herein, to solve the abovementioned problem, we demonstrate a universal route to develop a highly sensitive tactile sensor with high resolution and a wide pressure range. The tactile sensor is composed of two layers of microstructured flexible electrodes with high modulus and conductive cotton fabric with low modulus. By optimizing the sensing films, the fabricated tactile sensor shows a high sensitivity of 8.9 × 104 kPa–1 from 2 Pa to 250 kPa because of the high structural compressibility and stress adaptation of the multilayered composite films. Meanwhile, a fast response speed of 18 ms, an ultrahigh resolution of 100 Pa over 100 kPa, and excellent durability over 20 000 loading/unloading cycles are demonstrated. Moreover, a 6 × 6 tactile sensor array is fabricated and shows promising potential application in electronic skin (e-skin). Therefore, employing multilayered composite films for tactile sensors is a novel strategy to achieve high-performance tactile perception in real-time health monitoring and artificial intelligence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.