BackgroundPregnancy triggers well-known alterations in maternal glucose and lipid balance but its overall effects on systemic metabolism remain incompletely understood.MethodsDetailed molecular profiles (87 metabolic measures and 37 cytokines) were measured for up to 4260 women (24–49 years, 322 pregnant) from three population-based cohorts in Finland. Circulating molecular concentrations in pregnant women were compared to those in non-pregnant women. Metabolic profiles were also reassessed for 583 women 6 years later to uncover the longitudinal metabolic changes in response to change in the pregnancy status.ResultsCompared to non-pregnant women, all lipoprotein subclasses and lipids were markedly increased in pregnant women. The most pronounced differences were observed for the intermediate-density, low-density and high-density lipoprotein triglyceride concentrations. Large differences were also seen for many fatty acids and amino acids. Pregnant women also had higher concentrations of low-grade inflammatory marker glycoprotein acetyls, higher concentrations of interleukin-18 and lower concentrations of interleukin-12p70. The changes in metabolic concentrations for women who were not pregnant at baseline but pregnant 6 years later (or vice versa) matched (or were mirror-images of) the cross-sectional association pattern. Cross-sectional results were consistent across the three cohorts and similar longitudinal changes were seen for 653 women in 4-year and 497 women in 10-year follow-up. For multiple metabolic measures, the changes increased in magnitude across the three trimesters.ConclusionsPregnancy initiates substantial metabolic and inflammatory changes in the mothers. Comprehensive characterisation of normal pregnancy is important for gaining understanding of the key nutrients for fetal growth and development. These findings also provide a valuable molecular reference in relation to studies of adverse pregnancy outcomes.Electronic supplementary materialThe online version of this article (doi:10.1186/s12916-016-0733-0) contains supplementary material, which is available to authorized users.
Genome-wide association studies have identified breast cancer risk variants in over 150 genomic regions, but the mechanisms underlying risk remain largely unknown. These regions were explored by combining association analysis with in silico genomic feature annotations. We defined 205 independent risk-associated signals with the set of credible causal variants (CCVs) in each one. In parallel, we used a Bayesian approach (PAINTOR) that combines genetic association, linkage disequilibrium, and enriched genomic features to determine variants with high posterior probabilities of being causal. Potentially causal variants were significantly over-represented in active gene regulatory regions and transcription factor binding sites. We applied our INQUSIT Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
T he global dissemination of carbapenem-resistant Enterobacteriaceae (CRE) has become an urgent public health concern (1,2). In 2016, the World Health Organization included CRE in a list of antimicrobial-resistant priority pathogens on which to concentrate future drug development strategies. Of note, carbapenem-resistant Klebsiella pneumoniae (CRKP) account for 60%-90% of clinical CRE infections in the United States, Europe, and China (1-3), resulting in an increased mortality rate of up to 40%-50% in nosocomial settings (4). The dissemination of CRKP is mostly clonal, and the population structure is geographically specific. Since its emergence during the early to mid-2000s, sequence type (ST) 258 has become the most prevalent CRKP clone in North America, Latin America, and Europe (5). However, in Asia, especially China, ST11 is the predominant clone, accounting for up to 60% of CRKP (3). ST11 is a single-locus (tonB) variant of ST258, and both types belong to the clonal group 258. A recombination event is thought to have occurred between a recipient ST11 and a donor ST442like strain, giving rise to ST258 during 1985-1997 (6,7). A phylogenomic study revealed that the ST258 population consists of >2 clades, resulting from an ≈215-kb recombination event that includes the capsule polysaccharide (cps) synthesis locus (6). The genetic differences generated by the resulting capsular switch are supposed to be primarily responsible for the ST258 diversification (8). Likewise, a segregation was identified in the ST11 population, resulting in >3 clades with different capsular loci (KL) (9-11). These studies consistently indicate that cps is a recombination hotspot in K. pneumoniae. However, the K-type distribution within ST11 in clinical settings is unclear. More important, the biological, epidemiologic, and
Background TNBC is the most aggressive breast cancer with higher recurrence and mortality rate than other types of breast cancer. There is an urgent need for identification of therapeutic agents with unique mode of action for overcoming current challenges in TNBC treatment. Methods Different inhibitors were used to study the cell death manner of DMOCPTL. RNA silencing was used to evaluate the functions of GPX4 in ferroptosis and apoptosis of TNBC cells and functions of EGR1 in apoptosis. Immunohistochemical assay of tissue microarray were used for investigating correlation of GPX4 and EGR1 with TNBC. Computer-aided docking and small molecule probe were used for study the binding of DMOCPTL with GPX4. Results DMOCPTL, a derivative of natural product parthenolide, exhibited about 15-fold improvement comparing to that of the parent compound PTL for TNBC cells. The cell death manner assay showed that the anti-TNBC effect of DMOCPTL mainly by inducing ferroptosis and apoptosis through ubiquitination of GPX4. The probe of DMOCPTL assay indicated that DMOCPTL induced GPX4 ubiquitination by directly binding to GPX4 protein. To the best of our knowledge, this is the first report of inducing ferroptosis through ubiquitination of GPX4. Moreover, the mechanism of GPX4 regulation of apoptosis is still obscure. Here, we firstly reveal that GPX4 regulated mitochondria-mediated apoptosis through regulation of EGR1 in TNBC cells. Compound 13, the prodrug of DMOCPTL, effectively inhibited the growth of breast tumor and prolonged the lifespan of mice in vivo, and no obvious toxicity was observed. Conclusions These findings firstly revealed novel manner to induce ferroptosis through ubiquitination of GPX4 and provided mechanism for GPX4 inducing mitochondria-mediated apoptosis through up-regulation of EGR1 in TNBC cells. Moreover, compound 13 deserves further studies as a lead compound with novel mode of action for ultimate discovery of effective anti-TNBC drug.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.