Silicon nanoparticles, having the same size as the autophagy-inducing QDs, CDs and AuNPs, do not induce autophagy in vitro and in vivo.
Fluorescent silicon nanoparticles (SiNPs), resembling a typical zero-dimensional silicon nanomaterial, have shown great potential in a wide range of biological and biomedical applications. However, information regarding the toxicity of this material in live organisms is still very scarce. In this study, we utilized Caenorhabditis elegans (C. elegans), a simple but biologically and anatomically well-described model, as a platform to systematically investigate the in vivo toxicity of SiNPs in live organisms at the whole-animal, cellular, subcellular, and molecular levels. We calculated the effect of SiNPs on C. elegans body length (N ≥ 75), lifespan (N ≥ 30), reproductive capacity (N ≥ 10), endocytic sorting (N ≥ 20), endoplasmic reticulum (ER) stress (N ≥ 20), mitochondrial stress (N ≥ 20), oxidative stress (N ≥ 20), immune response (N ≥ 20), apoptosis (N ≥ 200), hypoxia response (N ≥ 200), metal detoxification (N ≥ 200), and aging (N ≥ 200). The studies showed that SiNPs had no significant effect on development, lifespan, or reproductive ability (p > 0.05), even when the worms were treated with a high concentration (e.g., 50 mg/mL) of SiNPs at all growth and development stages. Subcellular analysis of the SiNP-treated worms revealed that the intracellular processes of the C. elegans intestine were not disturbed by the presence of SiNPs (p > 0.05). Toxicity analyses at the molecular level also demonstrated that the SiNPs did not induce harmful or defensive cellular events, such as ER stress, mitochondria stress, or oxidative stress (p > 0.05). Together, these findings confirmed that the SiNPs are low in toxicity and biocompatible, supporting the suggestion that the material is an ideal fluorescent nanoprobe for wide-ranging biological and biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.