Background
The application of intermaxillary traction is often accompanied by the unexpected movement of dentition, especially anchorage teeth. The aim of this study was to comprehensively compare the influence of cross-sectional shape of ribbon arch wires with edgewise and round wires on intermaxillary traction in Class II malocclusion treatment using FEA simulation.
Methods
The dentofacial structure was simulated in finite element software. A retraction force of 1.5 N was applied to different cross-sectional orthodontic arch wires: a ribbon wire (0.025 × 0.017-in. and 0.025 × 0.019-in.), a rectangular wire (0.017 × 0.025-in. and 0.019 × 0.025-in.) and a round wire (Φ 0.018-in. and Φ 0.020-in.).
Results
Among the three groups, ribbon wire (0.025 × 0.017-in. and 0.025 × 0.019-in.) exhibited the lowest displacement in the X-axis (12.61 μm and 12.77 μm, respectively) and Z-axis (8.99 μm and 9.06 μm, respectively). However, the 0.025 × 0.017-in. ribbon wire showed the highest Y-axis displacement. In the round wire group, Φ 0.020-in. wire displayed less rotation than Φ 0.018-in. wire, where the sagittal, frontal and occlusal rotation of Φ 0.020-in. wire was almost half of that of Φ 0.018-in. wire. The movement of the first molar region was intermediate between the ribbon arch group and the round wire group. Notably, the values of the 0.025 × 0.017-in. arch wire displacement, which were higher than those of any other group, peaked at 0.019 mm in the central incisor region with a spike-like shape. The deformation range of the Φ 0.018-in. wire group was the largest in this study.
Conclusions
The cross-section of the arch wire influenced force delivery in Class II intermaxillary traction. With the same shape, a larger cross-sectional area led to less mandibular dentition movement. For the rectangular arch wire and ribbon arch wire groups, since the height and width were inverted, the vertical displacement of anchorage teeth in the ribbon wire group was reduced, but the possibility of buccal tipping in mandibular anterior teeth also increased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.