Affected by confined aquifer, basal inrush accidents caused by excavation are common in foundation pits, and accurate estimation of the safety thickness of the base is a big concern of engineers. In this paper, a three-dimensional failure mechanism of base inrush was constructed for a rectangular foundation pit. In this mechanism, the strength of the soil mass was assumed to be nonhomogeneous along the depth, and the soil-mass failure satisfied the linear and nonlinear Mohr–Coulomb strength criteria. Then, based on the limit equilibrium theory, the prediction method for the safety thickness of the base against confined water inrush was deduced, and a comparison with existing research works was conducted. Furthermore, the influence laws of soil strength parameters, pit design parameters, and confined water pressure on the critical safety thickness were analyzed. The results show that the critical safety thickness of the base is positively correlated with nonlinear coefficient and confined water pressure but negatively correlated with cohesion, internal friction angle, nonhomogeneity coefficient, and unit weight. The soil strength is a key factor affecting the base safety thickness, which should be paid enough attention to in engineering design and construction. The research findings in this paper can provide a theoretical reference for the prevention and control of basal inrush accidents in confined water strata.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.