Previous studies have shown insular activations involving sensory, motor, and affective processing. However, the functional roles of subdivisions within the human insula are still not well understood. In the present study, we used intracranial electroencephalography and electrical cortical stimulation to investigate the causal roles of subdivisions of the insula in auditory emotion perception in epilepsy patients implanted with depth electrodes in this brain region. The posterior and the anterior subdivisions of the human insula, identified based on structural and functional analyses, showed distinct response properties to auditory emotional stimuli. The posterior insula showed auditory responses that resemble those observed in Heschl's gyrus, whereas the anterior insula (AI) responded to the emotional contents of the auditory stimuli in a similar way as observed in the amygdala. Furthermore, the degree of the differentiation between various emotion types increased from the posterior to the AI. Our findings suggest different roles played by the two regions of the human insula and a transformation from sensory to affective representations in auditory modality along the posterior-to-anterior axis in the human insula.
The spontaneous strain associated with the structural change in the metal-insulator transition in VO 2 is orders of magnitude higher than thermal expansion mismatch used in bimetallic strips. Here we show that this strain can be leveraged to thermally activate bending of crystalline VO 2-based bilayer microcantilevers at extremely large curvatures, making them suitable for thermal sensors, energy transducers and actuators with unprecedented sensitivities. The single-crystallinity, deposition conditions, and postdeposition treatments were utilized to control the metal-insulator domain structure along the cantilever, by which we achieved bending curvatures a few hundred times higher than conventional bilayer cantilevers with the same geometry.
The mechanical behavior of nanolaminates is dominated by interfaces that act as sources, barriers, and preferred sites for storage and dynamic recovery of glide dislocations. In this article, the deformation mechanisms of a variety of metal-based nanolaminates are reviewed with emphasis on unusual mechanical properties such as ultra-high flow strength without loss of plastic deformability. IMPACT STATEMENT This paper reviews the current understanding of the mechanisms and mechanics of nanolaminated composites, and discusses the future direction in predicting the mechanical behavior of laminated composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.