microRNA 21 (miRNA‑21) promotes the development of cardiac fibrosis, hypertrophy and heart failure. However, whether it can be used as a biomarker for the diagnosis and prognosis of heart failure remains unclear. The current study assessed circulating miRNA‑21 as a viable indicator for diagnosis and prognosis of heart failure. The levels of miRNA‑21 and brain natriuretic peptide were measured in serum obtained from the peripheral vein (miRNA‑21‑PV) and coronary sinus (miRNA‑21‑CS) of 80 patients with heart failure and 40 control individuals via reverse transcription‑quantitative polymerase chain reaction and ELISA, respectively. The correlations between circulating miRNA‑21 and diagnosis, severity, prognosis and re‑hospitalization rate of heart failure were evaluated using statistical analysis. Serum miRNA‑21‑PV and miRNA‑21‑CS levels of patients with heart failure were significantly higher than that of control subjects, and were also correlated with ejection fraction and brain natriuretic peptide. Both were determined to have high levels of sensitivity and specificity for diagnosing heart failure. Follow‑up of the patients with heart failure indicated that miRNA‑21‑PV and miRNA‑21‑CS were correlated with prognosis, and miRNA‑21‑CS was efficient in predicting re‑hospitalization for heart failure. Circulating miRNA‑21 has potential to be a biomarker of heart failure.
BackgroundBrachial-ankle pulse wave velocity (baPWV), a direct measure of aortic stiffness, has increasingly become an important assessment for cardiovascular risk. The present study established the reference and normal values of baPWV in a Central Asia population in Xinjiang, China.MethodsWe recruited participants from a central Asia population in Xinjiang, China. We performed multiple regression analysis to investigate the determinants of baPWV. The median and 10th-90th percentiles were calculated to establish the reference and normal values based on these categories.ResultsIn total, 5,757 Han participants aged 15–88 years were included in the present study. Spearman correlation analysis showed that age (r = 0.587, p < 0.001) and mean blood pressure (MBP, r = 0.599, p <0.001) were the major factors influencing the values of baPWV in the reference population. Furthermore, in the multiple linear regression analysis, the standardized regression coefficients of age (0.445) and MBP (0.460) were much higher than those of body mass index, triglyceride, and glycemia (-0.054, 0.035, and 0.033, respectively). In the covariance analysis, after adjustment for age and MBP, only diabetes was the significant independent determinant of baPWV (p = 0.009). Thus, participants with diabetes were excluded from the reference value population. The reference values ranged from 14.3 to 25.2 m/s, and the normal values ranged from 13.9 to 21.2 m/s.ConclusionsThis is the first study that has established the reference and normal values for baPWV according to age and blood pressure in a Central Asia population.
BackgroundSympathetic activity involves the pathogenesis of atrial fibrillation (AF). Renal sympathetic denervation (RSD) decreases sympathetic renal afferent nerve activity, leading to decreased central sympathetic drive. The aim of this study was to identify the effects of RSD on AF inducibility induced by hyper-sympathetic activity in a canine model.MethodsTo establish a hyper-sympathetic tone canine model of AF, sixteen dogs were subjected to stimulation of left stellate ganglion (LSG) and rapid atrial pacing (RAP) for 3 hours. Then animals in the RSD group (n = 8) underwent radiofrequency ablation of the renal sympathetic nerve. The control group (n = 8) underwent the same procedure except for ablation. AF inducibility, effective refractory period (ERP), ERP dispersion, heart rate variability and plasma norepinephrine levels were measured at baseline, after stimulation and after ablation.ResultsLSG stimulation combined RAP significantly induced higher AF induction rate, shorter ERP, larger ERP dispersion at all sites examined and higher plasma norepinephrine levels (P<0.05 in all values), compared to baseline. The increased AF induction rate, shortened ERP, increased ERP dispersion and elevated plasma norepinephrine levels can be almost reversed by RSD, compared to the control group (P<0.05). LSG stimulation combined RAP markedly shortened RR-interval and standard deviation of all RR-intervals (SDNN), Low-frequency (LF), high-frequency (HF) and LF/HF ratio (P<0.05). These changes can be reversed by RSD, compared to the control group (P<0.05).ConclusionsRSD significantly reduced AF inducibility and reversed the atrial electrophysiological changes induced by hyper-sympathetic activity.
Background Ventricular arrhythmia after myocardial infarction is the most important risk factor for sudden cardiac death, which poses a serious threat to human health. As the correlation between autonomic nervous systemic dysfunction and heart rhythm abnormality has been gradually revealed, remedies targeting autonomic nervous system dysfunction, especially the sympathetic nerve, have emerged. Among them, renal denervation is noted for its powerful effect on the inhibition of sympathetic nerve activity. We aim to investigate whether renal denervation can reduce ventricular arrhythmia after myocardial infarction and thus decrease the risk of sudden cardiac death. In addition, we explore the potential mechanism with respect to nerve activity and remodeling. Methods and Results Twenty‐four beagles were randomized into the control (n=4), renal denervation (n=10), and sham (n=10) groups. Permanent left anterior descending artery ligation was performed to establish myocardial infarction in the latter 2 groups. Animals in the renal denervation group underwent both surgical and chemical renal denervation. Compared with dogs in the sham group, dogs in the renal denervation group demonstrated attenuated effective refractory period shortening and inhomogeneity, flattened restitution curve, increased ventricular threshold, and decreased ventricular arrhythmia. Heart rate variability assessment, catecholamine measurement, and nerve discharge recordings all indicated that renal denervation could reduce whole‐body and local tissue sympathetic tone. Tissue analysis revealed a significant decrease in neural remodeling in both the heart and stellate ganglion. Conclusions Surgical and chemical renal denervation decreased whole‐body and local tissue sympathetic activity and reversed neural remodeling in the heart and stellate ganglion. Consequently, renal denervation led to beneficial remodeling of the electrophysiological characteristics in the infarction border zone, translating to a decrease in ventricular arrhythmia after myocardial infarction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.