Herein, poly(3-hexylthiophene-2,5-diyl) (P3HT) nanofiber-based organic field-effect transistors were successfully prepared by coaxial electrospinning technique with P3HT as the core polymer and poly(methyl methacrylate) (PMMA) as the shell polymer, followed by extraction of PMMA. Three different solvents for the core polymer, including chloroform, chlorobenzene and 1,2,4-trichlorobenzene, were employed to manipulate the morphologies and electrical properties of P3HT electrospun nanofibers. Through the analyses from dynamic light scattering of P3HT solutions, polarized photoluminescence and X-ray diffraction pattern of P3HT electrospun nanofibers, it is revealed that the P3HT electrospun nanofiber prepared from the chloroform system displays a low crystallinity but highly oriented crystalline grains due to the dominant population of isolated-chain species in solution that greatly facilitates P3HT chain stretching during electrospinning. The resulting high charge-carrier mobility of 3.57 × 10−1 cm2·V−1·s−1 and decent mechanical deformation up to a strain of 80% make the P3HT electrospun nanofiber a promising means for fabricating stretchable optoelectronic devices.
High-stability and uniform Li deposition is essential for realizing applications of Li-metal batteries (LMBs). Therefore, a scaffold for polymer electrolytes is designed to achieve highly stable operation and dendrite-free Li...
Solid polymer electrolytes (SPEs) provide an intimate contact with electrodes and accommodate volume changes in the Li‐anode, making them ideal for all‐solid‐state batteries (ASSBs); however, confined chain swing, poor ion‐complex dissociation, and barricaded Li+‐transport pathways limit the ionic conductivity of SPEs. This study develops an interpenetrating polymer network electrolyte (IPNE) comprising poly(ethylene oxide)‐ and poly(vinylidene fluoride)‐based networked SPEs (O‐NSPE and F‐NSPE, respectively) and lithium bis(fluorosulfonyl) imide (LiFSI) to address these challenges. The CF2/CF3 segments of the F‐NSPE segregate FSI− to form connected Li+‐diffusion domains, and COC segments of the O‐NSPE dissociate the complexed ions to expedite Li+ transport. The synergy between O‐NSPE and F‐NSPE gives IPNE high ionic conductivity (≈1 mS cm−1) and a high Li‐transference number (≈0.7) at 30 °C. FSI− aggregation prevents the formation of a space‐charge zone on the Li‐anode surface to enable uniform Li deposition. In Li||Li cells, the proposed IPNE exhibits an exchange current density exceeding that of liquid electrolytes (LEs). A Li|IPNE|LiFePO4 ASSB achieves charge–discharge performance superior to that of LE‐based batteries and delivers a high rate of 7 mA cm−2. Exploiting the synergy between polymer networks to construct speedy Li+‐transport pathways is a promising approach to the further development of SPEs.
Interpenetrating Polymer Network Electrolyte
In article number 2213469, Hsisheng Teng and co‐workers demonstrate a robust solid‐state lithium battery with synergy between O‐based and F‐based polymer networks, which overpowers liquid electrolyte batteries in terms of safety and performance. This synergistic relationship, combined with the creation of an anion‐aggregate domain, expedites Li+ transport in the battery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.