Repeated sprint cycling is an effective training method in promoting athletic performance of cyclists, which may induce severe fatigue of lower limb muscles. However, the relationship between the fatigue of each lower limb muscles and the changing of exercise performance remains unclear. In this study, ten cyclist volunteers performed a series of 6-second sprints with 24-s recovery for five times. Power, cadence, and EMG mean frequency (MNF) of each lower limb muscle group for every 2-second epoch, as well as the grey relational grade between exercise performance and MNF of each lower limb muscle group during the whole process were calculated. It has been found that MNF of Rectus femoris (RF), Vastus (VAS), Gastrocnemius (GAS), and the hamstring muscle group (HAM) showed significant negative correlation with the increase in both sprint number and intrasprint duration time, while the grey relational grade of HAM and VAS was higher than that of other muscles. The results demonstrated that the exercise performance of both power and cadence were most closing related to the fatigue degree of HAM and VAS during repeated sprint cycling exercise.
Wang et al. Muscle Fatigue Enhance EMG-EMG Coupling which may be related to the increased common corticospinal drive from motor cortex to the antagonistic muscles. The increase in antagonistic muscle coupling induced by muscle fatigue may provide suggestions for the design of training program for patients with post-stroke spasticity.
The present study examined the effects of transcranial direct current stimulation (tDCS) using Halo Sport on the time to exhaustion (TTE) in relation with muscle activities and corticomuscular coupling of agonist and antagonist muscles during a sustained isometric fatiguing contraction performed with the elbow flexors. Twenty healthy male college students were randomly assigned to tDCS group and control group. The two group participants performed two experimental sessions which consisted of pre-fatigue isometric maximal voluntary contraction (MVC), sustained submaximal voluntary contractions (30% maximal torque) performed to exhaustion, and post-fatigue MVC with the right elbow flexor muscles. Sham stimulation (90 s) and tDCS (20 min) were applied for control and tDCS group participants 20 min prior to the second session test, respectively. MVC strength in pre- and post-fatigue test, TTE, electroencephalogram (EEG), and electromyography (EMG) of biceps brachii (BB) and triceps brachii (TB) were recorded during the tests. It was found that tDCS using the Halo Sport device significantly increased TTE and thus improved muscular endurance performance. The improvement may be partly related to the improvement of neuromuscular efficiency as reflected by decrease of antagonistic muscle coactivation activities, which may be related to cortical originated central processing mechanism of neuromuscular activities.
The aim of this study was to examine whether antagonist muscles may be fatigued during a prolonged isometric fatiguing elbow flexion at very low forces. Twelve healthy male subjects sustained an isometric elbow flexion at 10% maximal voluntary contraction torque until exhaustion while multichannel electromyographic signals were collected from the biceps brachii (BB) and triceps brachii (TB). Muscle fiber conduction velocity (CV) and fractal dimension (FD) of both muscles were calculated to reflect peripheral and central fatigue. CV and FD of TB as well as FD of BB decreased progressively during the sustained fatiguing contraction, while the CV of BB declined at the beginning of the contraction and then increased progressively until the end of the contraction. The result may indicate that during the sustained low-force isometric fatiguing contraction, antagonist muscle may be peripherally fatigued, and changes in coactivation activities were modulated not only by central neuronal mechanisms of common drive but also by peripheral metabolic factors.
The aim of this study was to analyze and compare the muscle activation and concomitant intermuscular coupling of antagonist muscles among bench presses with different instability degrees. Twenty-nine untrained male college students performed bench press exercises at an intensity of 60% 1 RM on three conditions: small unstable bench press with Smith machine (SBP), medium unstable bench press of free weight (FWBP), and large unstable bench press with increased instability by suspending the load with elastic bands (IIBP). One-way repeated measures analysis of variance was used to compare integrated EMG activity values of the biceps brachii (BB), posterior deltoid (PD), long head of the triceps brachii (TB), anterior deltoid (AD), upper portion of the pectoralis major (PM) muscles, and phase synchronization index (PSI) of BB-TB and PD-AD antagonist muscle pairs. A higher integrated EMG of BB muscle was found during bench press with a more unstable condition. IIBP showed a higher integrated EMG of prime movers (TB, AD, and PM) and stabilizing of BB than SBP and FWBP. PSI between muscle pairs of BB-TB in the gamma frequency band was higher in SBP than the other bench presses with unstable conditions, which may be related to the optimal “internal model” for antagonist muscles during bench press exercise. Therefore, IIBP training may be an effective accessory exercise to maintain a higher level of muscle activation across primary and stabilizing muscles with a lighter load for untrained men, while SBP may be a suitable bench press exercise for untrained participants who have not developed the neuromuscular adaptations necessary for correct stabilization of the elbow joint.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.