In this paper, we introduce (p, q)-gamma operators which preserve x 2 , we estimate the moments of these operators, and establish direct and local approximation theorems of these operators. Then two approximation theorems about Lipschitz functions are obtained. The estimates on the rate of convergence and some weighted approximation theorems of the operators are also obtained. Furthermore, the Voronovskaja-type asymptotic formula is also presented.
In this paper, we introduce a new type λ-Bernstein operators with parameter , we investigate a Korovkin type approximation theorem, establish a local approximation theorem, give a convergence theorem for the Lipschitz continuous functions, we also obtain a Voronovskaja-type asymptotic formula. Finally, we give some graphs and numerical examples to show the convergence of to , and we see that in some cases the errors are smaller than to f.
In this paper, we introduce the Bézier variant of Kantorovich type λ-Bernstein operators with parameter . We establish a global approximation theorem in terms of second order modulus of continuity and a direct approximation theorem by means of the Ditzian–Totik modulus of smoothness. Finally, we combine the Bojanic–Cheng decomposition method with some analysis techniques to derive an asymptotic estimate on the rate of convergence for some absolutely continuous functions.
In this paper, we introduce a kind of q-gamma operators based on the concept of a q-integral. We estimate moments of these operators and establish direct and local approximation theorems of the operators. The estimates on the rate of convergence and weighted approximation of the operators are obtained, a Voronovskaya asymptotic formula is also presented. MSC: 41A10; 41A25; 41A36
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.