We incubated eggs of Calotes versicolor at four constant temperatures ranging from 24 degrees C to 33 degrees C to assess the effects of incubation temperature on hatching success, embryonic use of energy, and hatchling phenotypes that are likely to affect fitness. All viable eggs increased in mass throughout incubation due to absorption of water, and mass gain during incubation was dependent on initial egg mass and incubation temperature. The average duration of incubation at 24 degrees C, 27 degrees C, 30 degrees C, and 33 degrees C was 82.1 days, 60.5 days, 51.4 days, and 50.3 days, respectively. Incubation temperature affected hatching success, energy expenditure for embryonic development, and several hatchling traits examined, but it did not affect the sex ratio of hatchlings. Hatching success was lowest (3.4%) at 33 degrees C, but a higher incidence of deformed embryos was recorded from eggs incubated at this temperature compared to eggs incubated at lower temperatures. Most of the deformed embryos died at the last stage of incubation. Energy expenditure for embryonic development was, however, higher in eggs incubated at 33 degrees C than those similarly incubated at lower temperatures. A prolonged exposure of eggs of C. versicolor at 33 degrees C appears to have an adverse and presumably lethal effect on embryonic development. Hatching success at 24 degrees C was also low (43.3%), but hatchlings incubated at 24 degrees C did not differ in any of the examined traits from those incubated at two intermediate temperatures (27 degrees C and 30 degrees C). Hatchlings incubated at 33 degrees C were smaller (snout-vent length, SVL) than those incubated at lower incubation temperatures and had larger mass residuals (from the regression on SVL) as well as shorter head length, hindlimb length, tympanum diameter, and eye diameter relative to SVL. Hatchlings from 33 degrees C had significantly lower scores on the first axis of a principal component analysis representing mainly SVL-free head size (length and width) and fore- and hindlimb lengths, but they had significantly higher scores on the second axis mainly representing SVL-free wet body mass. Variation in the level of fluctuating asymmetry in eye diameter associated with incubation temperatures was quite high, and it was clearly consistent with the prediction that environmental stress associated with the highest incubation temperatures might produce the highest level of asymmetry. Newly emerged hatchlings exhibited sexual dimorphism in head width, with male hatchlings having larger head width than females.
The maternal manipulation hypothesis for the evolution of reptilian viviparity has been claimed to apply to any situation where gravid females are able to maintain body temperatures different from those available in external nests, but empirical data that support this hypothesis are very limited. Here, we tested this hypothesis using gravid females of a warm‐climate lizard, Mabuya multifasciata, by subjecting them to five thermal regimes for the whole gestation period. We found gravid females selected lower body temperatures and thermoregulated more precisely than did nongravid females. Offspring produced in different treatments differed in head size, limb length and sprint speed, but not in overall body size or mass. Variation in morphological traits of offspring was induced primarily by extreme temperatures. Sprint speed of offspring was more likely affected by the mean but not by the variance of gestation temperatures. Gravid females maintained more stable body temperatures than did nongravid females not because these temperatures resulted in the optimization of offspring phenotypes but because the range of temperatures optimal for embryonic development was relatively narrow. Our data conform to the main predictions from the maternal manipulation hypothesis that females should adjust thermoregulation during pregnancy to provide optimal thermal conditions for developing embryos and that phenotypic traits forged by maternal thermoregulation should enhance offspring fitness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.