A wide variety of sensors have been incorporated into a spectrum of wireless sensor network (WSN) platforms, providing flexible sensing capability over a large number of low-power and inexpensive nodes. Traditional signal processing algorithms, however, often prove too complex for energy-and-cost-effective WSN nodes. This study explores how to design efficient sensing and classification algorithms that achieve reliable sensing performance on energy-andcost-effective hardware without special powerful nodes in a continuously changing physical environment. We present the detection and classification system in a cutting-edge surveillance sensor network, which classifies vehicles, persons, and persons carrying ferrous objects, and tracks these targets with a maximum error in velocity of 15%. Considering the demanding requirements and strict resource constraints, we design a hierarchical classification architecture that naturally distributes sensing and computation tasks at different levels of the system. Such a distribution allows multiple sensors to collaborate on a sensor node, and the detection and classification results to be continuously refined at different levels of the WSN. This design enables reliable detection and classification without involving high-complexity computation, reduces network traffic, and emphasizes resilience and adaptation to the realistic environment. We evaluate the system with performance data collected from outdoor experiments and field assessments. Based on the experience acquired and lessons learned when developing this system, we abstract common issues and introduce several guidelines which can direct future development of detection and classification solutions based on WSNs.
Abstract. In surveillance and tracking applications, wireless sensor nodes collectively monitor the existence of intruding targets. In this paper, we derive closed form results for predicting surveillance performance attributes, represented by detection probability and average detection delay of intruding targets, based on tunable system parameters, represented by node density and sleep duty cycle. The results apply to both stationary and mobile targets, and shed light on the fundamental connection between aspects of sensing quality and deployment choices. We demonstrate that our results are robust to realistic sensing models, which are proposed based on experimental measurements of passive infrared sensors. We also validate the correctness of our results through extensive simulations.
Power optimization has become a key challenge in the design of large-scale enterprise data centers. Existing research efforts focus mainly on computer servers to lower their energy consumption, while only few studies have tried to address the energy consumption of data center networks (DCNs), which can account for 20% of the total energy consumption of a data center. In this paper, we propose CARPO, a correlation-aware power optimization algorithm that dynamically consolidates traffic flows onto a small set of links and switches in a DCN and then shuts down unused network devices for energy savings. In sharp contrast to existing work, CARPO is designed based on a key observation from the analysis of real DCN traces that the bandwidth demands of different flows do not peak at exactly the same time. As a result, if the correlations among flows are considered in consolidation, more energy savings can be achieved. In addition, CARPO integrates traffic consolidation with link rate adaptation for maximized energy savings. We implement CARPO on a hardware testbed composed of 10 virtual switches configured with a production 48-port OpenFlow switch and 8 servers. Our empirical results with Wikipedia traces demonstrate that CARPO can save up to 46% of network energy for a DCN, while having only negligible delay increases. CARPO also outperforms two state-of-the-art baselines by 19.6% and 95% on energy savings, respectively. Our simulation results with 61 flows also show the superior energy efficiency of CARPO over the baselines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.