The deformation in the inner region along the thickness of the heavy steel plate can be improved by snake rolling method. Then the microstructure and property will be refined and the crack in the inner region may be avoided. So the in-depth research on snake rolling method mechanics parameter modeling should be conducted to guide production. The rolling deformation zone will be divided into back slip zone, cross shear zone, front slip zone and reverse deflection zone according to the direction of the friction during the snake rolling process. The four zones may not exist at the same time. The boundary conditions of existence of the back slip zone, cross shear zone and front slip zone were established by calculating the position of neutral point by a special method. The calculating models which were used to calculate the snake rolling mechanical parameters including the rolling force and rolling torque were setup. The calculated models of unit compressive pressure in the four zones were setup by the slab method, and at this basis, the accurate calculating models of the rolling force and rolling torque were setup according to the composition of the rolling deformation zone and the boundary condition. The mechanical parameters were calculated by the analytic method and the numerical method, and the relative deviation is less than 5% which can satisfy the industrial requirement. The present analytical model can predict the characteristics during snake rolling easily and quickly and it is also suitable for online control applications.
The deformation in the inner region along the thickness of the heavy steel plate can be improved by snake rolling method. Then the microstructure and property will be refined and the crack in the inner region may be avoided. Therefore, the in-depth research on snake rolling method mechanics parameter modeling should be conducted to guide production. A snake rolling process with the same roll diameters and different angular velocity was conducted in this paper. The rolling deformation zone will be divided into back slip zone, front slip zone, cross shear zone, and reverse deflection zone according to the direction of the friction during the snake rolling process. The four zones may not exist at the same time. The boundary conditions of existence of the back slip zone, front slip zone, and cross shear zone were established according to the relationship between threading angle and neutral angle. The calculating models which were used to calculate the snake rolling mechanical parameters including the rolling force and rolling torque were set up. The calculated models of unit compressive pressure in the four zones were set up by the slab method, and on this basis the accurate calculating models of the rolling force and rolling torque were set up according to the composition of the rolling deformation zone and the boundary condition. The mechanical parameters were calculated by the analytical method and the numerical method, and the relative deviation is less than 6% which can satisfy the industrial requirement. The present analytical model can predict the characteristics during snake rolling easily and quickly and it is also suitable for online control applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.