Self-assembly of phenolic resins and a Pluronic block copolymer via the soft-template method enables the formation of well-organized polymeric mesostructures, providing an easy way for preparation of ordered mesoporous carbons (OMCs). However, direct synthesis of OMCs with high nitrogen content remains a significant challenge due to the limited availability of nitrogen precursors capable of co-polymerizing with phenolic resins without deterioration of the order of mesostructural arrangement and significant diminishment of nitrogen content during carbonization. In this work, we demonstrate pyrolysis of the soft-templated polymeric composites in ammonia as a direct, facile way towards nitrogen-enriched OMCs (N-OMCs). This approach does not require any nitrogen-containing carbon precursors or post-treatment, but takes advantage of the preferential reaction and/or replacement of oxygen with nitrogen species, generated by decomposition of ammonia at elevated temperatures, in oxygen-rich polymers during pyrolysis. It combines carbonization, nitrogen functionalization, and activation into one simple process, generating N-OMCs with a uniform pore size, large surface area (up to 1400 m 2 g À1 ), and high nitrogen content (up to 9.3 at%). More importantly, the ordering of the meso-structure is well-maintained as long as the heating temperature does not exceed 800 C, above which (e.g., 850 C) a slight structural degradation is observed. When being used as electrode materials for symmetric electric double layer capacitors, N-OMCs demonstrate enhanced capacitance (6.8 mF cm À2 vs. 3.2 mF cm À2 ) and reduced ion diffusion resistance compared to the non-NH 3 -treated sample.
Abstract:The melt flow, level fluctuation, temperature field, and solidification behavior coupled with electromagnetic stirring (EMS) effects in the continuous casting mold region of U71Mn steel bloom were numerically analyzed by commercial computational fluid dynamics (CFD) software named ANSYS FLUENT. The effects of submerged entry nozzle (SEN) structures and the installation methods for optimized four-port SEN on the flow pattern, level fluctuation, heat transfer and initial solidification behavior in a bloom mold loaded with EMS were investigated. The aim is to propose a better SEN condition for the big bloom casting of high railway steel. The water simulation experiments were conducted to show the flow characteristics under different SEN conditions and verify the numerical model of flow pattern. The experimental and numerical simulation results showed that the optimized four-port SEN with diagonal installation cannot only improve the flow pattern of the molten steel by alleviating the level fluctuation and reducing the impact pressure to the wall. It is also beneficial for temperature variation at both bloom surface and corner, as well as the local solidified shell thinning phenomena due to the elimination of impingement effect.
Abstract:The flow, temperature, solidification, and solute concentration field in a continuous casting bloom mold were solved simultaneously by a multiphysics numerical model by considering the effect of in-mold electromagnetic stirring (M-EMS). The mold metallurgical differences between cases with and without EMS are discussed first, and then the solute transport model verified. Moreover, the effects of EMS current intensity on the metallurgical behavior in the bloom mold were also investigated. The simulated solute distributions were basically consistent with the test results. The simulations showed that M-EMS can apparently homogenize the initial solidified shell, liquid steel temperature, and solute element in the EMS effective zone. Meanwhile, the impingement effect of jet flow and molten steel superheat can be reduced, and the degree of negative segregation in the solidified shell at the mold corner alleviated from 0.74 to 0.78. However, the level fluctuation and segregation degree in the shell around the center of the wide and narrow sides were aggravated from 4.5 mm to 6.2 mm and from 0.84 to 0.738, respectively. With the rise of current intensity the bloom surface temperature, level fluctuation, stirring intensity, uniformity of molten steel temperature, and solute distribution also increased, while the growth velocity of the solidifying shell in the EMS effective zone declined and the solute mass fraction at the center of the computational outlet (z = 1.5 m) decreased. M-EMS with a current intensity of 600 A is more suitable for big bloom castings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.