Abstract. In real sensor network deployments, spatial distributions of sensors are usually far from being uniform. Such networks often contain regions without enough sensor nodes, which we call holes. In this paper, we show that holes are important topological features that need to be studied. In routing, holes are communication voids that cause greedy forwarding to fail. Holes can also be defined to denote regions of interest, such as the "hot spots" created by traffic congestion or sensor power shortage. In this paper, we define holes to be the regions enclosed by a polygonal cycle which contains all the nodes where local minima can appear. We also propose simple and distributed algorithms, the TENT rule and BOUNDHOLE, to identify and build routes around holes. We show that the boundaries of holes marked using BOUNDHOLE can be used in many applications such as geographic routing, path migration, information storage mechanisms and identification of regions of interest.
CRISPR-Cas12a is a promising genome editing system for targeting AT-rich genomic regions. Comprehensive genome engineering requires simultaneous targeting of multiple genes at defined locations. Here, to expand the targeting scope of Cas12a, we screen nine Cas12a orthologs that have not been demonstrated in plants, and identify six, ErCas12a, Lb5Cas12a, BsCas12a, Mb2Cas12a, TsCas12a and MbCas12a, that possess high editing activity in rice. Among them, Mb2Cas12a stands out with high editing efficiency and tolerance to low temperature. An engineered Mb2Cas12a-RVRR variant enables editing with more relaxed PAM requirements in rice, yielding two times higher genome coverage than the wild type SpCas9. To enable large-scale genome engineering, we compare 12 multiplexed Cas12a systems and identify a potent system that exhibits nearly 100% biallelic editing efficiency with the ability to target as many as 16 sites in rice. This is the highest level of multiplex edits in plants to date using Cas12a. Two compact single transcript unit CRISPR-Cas12a interference systems are also developed for multi-gene repression in rice and Arabidopsis. This study greatly expands the targeting scope of Cas12a for crop genome engineering.
BackgroundDating back to the first epidemic among injection drug users in 1989, the Yunnan province has had the highest number of human immunodeficiency virus type 1 (HIV-1) infections in China. However, the molecular epidemiology of HIV-1 in Yunnan has not been fully characterized.Methods and FindingsUsing immunoassays, we identified 103,015 accumulated cases of HIV-1 infections in Yunnan between 1989 and 2004. We studied 321 patients representing Yunnan's 16 prefectures from four risk groups, 11 ethnic populations, and ten occupations. We identified three major circulating subtypes: C/CRF07_BC/CRF08_BC (53%), CRF01_AE (40.5%), and B (6.5%) by analyzing the sequence of p17, which is part of the gag gene. For patients with known risk factors, 90.9% of injection drug users had C/CRF07_BC/CRF08_BC viruses, whereas 85.4% of CRF01_AE infections were acquired through sexual transmission. No distinct segregation of CRF01_AE viruses was found among the Dai ethnic group. Geographically, C/CRF07_BC/CRF08_BC was found throughout the province, while CRF01_AE was largely confined to the prefectures bordering Myanmar. Furthermore, C/CRF07_BC/CRF08_BC viruses were found to consist of a group of viruses, including C, CRF08_BC, CRF07_BC, and new BC recombinants, based on the characterization of their reverse transcriptase genes.ConclusionsThis is the first report of a province-wide HIV-1 molecular epidemiological study in Yunnan. While C/CRF07_BC/CRF08_BC and CRF01_AE are codominant, the discovery of many sexually transmitted CRF01_AE cases is new and suggests that this subtype may lead to a new epidemic in the general Chinese population. We discuss implications of our results for understanding the evolution of the HIV-1 pandemic and for vaccine development.
Most of the individuals infected with SARS coronavirus (SARS-CoV) spontaneously recovered without clinical intervention. However, the immunological correlates associated with patients' recovery are currently unknown. In this report, we have sequentially monitored 30 recovered patients over a two-year period to characterize temporal changes in SARS-CoV-specific antibody responses as well as cytotoxic T cell (CTL) responses. We have found persistence of robust antibody and CTL responses in all of the study subjects throughout the study period, with a moderate decline one year after the onset of symptoms. We have also identified two potential major CTL epitopes in N proteins based on ELISPOT analysis of pooled peptides. However, despite the potent immune responses and clinical recovery, peripheral lymphocyte counts in the recovered patients have not yet been restored to normal levels. In summary, our study has, for the first time, characterized the temporal and dynamic changes of humoral and CTL responses in the natural history of SARS-recovered individuals, and strongly supports the notion that high and sustainable levels of immune responses correlate strongly with the disease outcome. Our findings have direct implications for future design and development of effective therapeutic agents and vaccines against SARS-CoV infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.