Helicobacter pylori is a major human pathogen that can cause peptic ulcers and chronic gastritis. Bismuth-based triple or quadruple therapies are commonly recommended for the treatment of H. pylori infections. However, the molecular mechanisms underlying treatment with bismuth are currently not fully understood. We have conducted a detailed comparative proteomic analysis of H. pylori cells both before and after treatment with colloidal bismuth subcitrate (CBS). Eight proteins were found to be significantly upregulated or downregulated in the presence of CBS (20 microg mL(-1)). Bismuth-induced oxidative stress was confirmed by detecting higher levels of lipid hydroperoxide (approximately 1.8 times) and hemin (approximately 3.4 times), in whole cell extracts of bismuth-treated H. pylori cells, compared with those from untreated cells. The presence of bismuth also led to an approximately eightfold decrease in cellular protease activities. Using immobilized-bismuth affinity chromatography, we isolated and subsequently identified seven bismuth-binding proteins from H. pylori cell extracts. The intracellular levels of four of these proteins (HspA, HspB, NapA and TsaA) were influenced by the addition of CBS, which strongly suggests that they interact directly with bismuth. The other bismuth-interacting proteins identified were two enzymes (fumarase and the urease subunit UreB), and a translational factor (Ef-Tu). Our data suggest that the inhibition of proteases, modulation of cellular oxidative stress and interference with nickel homeostasis may be key processes underlying the molecular mechanism of bismuth's actions against H. pylori.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.