Due to the rapidly growing bacterial antibiotic-resistance and the scarcity of novel agents in development, bacterial infection is still a global problem. Therefore, new types of antibacterial agents, which are effective both alone and in combination with traditional antibiotics, are urgently needed. In this paper, a series of antibacterial ocotillol-type C-24 epimers modified from natural 20(S)-protopanaxadiol were synthesized and evaluated for their antibacterial activity. According to the screening results of Gram-positive bacteria (B. subtilis 168 and MRSA USA300) and Gram-negative bacteria (P. aer PAO1 and A. baum ATCC19606) in vitro, the derivatives exhibited good antibacterial activity, particularly against Gram-positive bacteria with an minimum inhibitory concentrations (MIC) value of 2–16 µg/mL. The subsequent synergistic antibacterial assay showed that derivatives 5c and 6c enhanced the susceptibility of B. subtilis 168 and MRSA USA300 to chloramphenicol (CHL) and kanamycin (KAN) (FICI < 0.5). Our data showed that ocotillol-type derivatives with long-chain amino acid substituents at C-3 were good leads against antibiotic-resistant pathogens MRSA USA300, which could improve the ability of KAN and CHL to exhibit antibacterial activity at much lower concentrations with reduced toxicity.
Ocotillol-type saponins have a wide spectrum of biological activities. Previous studies indicated that the configuration at the C24 position may be responsible for their stereoselectivity in pharmacological action and pharmacokinetics. Natural ocotillol-type saponins share a 20(S)-form but it has been found that the 20(R)-stereoisomers have different pharmacological effects. The semisynthesis of 20(R)-ocotillol-type saponins has not been reported and it is therefore worthwhile clarifying their crystal structures. Two C24 epimeric 20(R)-ocotillol-type saponins, namely (20R,24S)-20,24-epoxydammarane-3β,12β,25-triol, C30H52O4, (III), and (20R,24R)-20,24-epoxydammarane-3β,12β,25-triol monohydrate, C30H52O4·H2O, (IV), were synthesized, and their structures were elucidated by spectral studies and finally confirmed by single-crystal X-ray diffraction. The (Me)C-O-C-C(OH) torsion angle of (III) is 146.41 (14)°, whereas the corresponding torsion angle of (IV) is -146.4 (7)°, indicating a different conformation at the C24 position. The crystal stacking in (III) generates an R4(4)(8) motif, through which the molecules are linked into a one-dimensional double chain. The chains are linked via nonclassical C-H...O hydrogen bonds into a two-dimensional network, and further stacked into a three-dimensional structure. In contrast to (III), epimer (IV) crystallizes as a hydrate, in which the water molecules act as hydrogen-bond donors linking one-dimensional chains into a two-dimensional network through intermolecular O-H...O hydrogen bonds. The hydrogen-bonded chains extend helically along the crystallographic a axis and generate a C4(4)(8) motif.
Introduction: To determine the phenotypes and genotypes of invasive Streptococcus pneumoniae (S. pneumoniae), 108 strains were isolated from paediatric patients with invasive pneumococcal diseases (IPDs) in Shenzhen from 2014 to 2018. Methods: Serotype profiles were defined by multiplex PCR of the capsule gene. Pneumococcal surface protein A (PspA) classification was performed through pspA gene sequencing. Antimicrobial resistance was examined by broth microdilution. Multilocus sequence typing (MLST) was determined based on next-generation sequencing data. Results: Eighty-one S. pneumoniae of 17 serotypes were finally collected. The coverage of the 13-conjugated polysaccharide vaccine (PCV13) was 88.9%. After the introduction of PCV13, the nonvaccine serotypes were added by serotypes 15b, 16F and 20. Vaccine serotype 3 increased by four serious cases. The pspA family 1 and pspA family 2 are predominant. The multiple drug resistance rate is 91.3%. None of the nonmeningitis isolates were resistant to penicillin, while 98.8% of all the isolates were resistant to erythromycin. Discussion: This work characterizes the molecular epidemiology of invasive S. pneumoniae in Shenzhen. Continued surveillance of serotype distribution and antimicrobial susceptibility is necessary to alert antibiotic-resistant nonvaccine serotypes and highly virulent serotypes.
In order to study the in vivo protective effect on myocardial ischemia, (20S,24R)-epoxydammarane-12β,25-diol, (V), and (20S,24S)-epoxydammarane-12β,25-diol, (VI), were synthesized through a novel synthetic route. Two key intermediates, namely (20S,24R)-3-acetyl-20,24-epoxydammarane-3β,12β,25-triol, (III) [obtained as the hemihydrate, CHO·0.5HO, (IIIa), and the ethanol hemisolvate, CHO·0.5CHOH, (IIIb), with identical conformations but different crystal packings], and (20S,24S)-3-acetyl-20,24-epoxydammarane-3β,12β,25-triol, CHO, (IV), were obtained during the synthesis. The structures were confirmed by H NMR,C NMR and HRMS analyses, and single-crystal X-ray diffraction. Molecules of (IIIa) are extended into a two-dimensional network constructed with water molecules linked alternately through intermolecular O-H...O hydrogen bonds, which are further stacked into a three-dimensional network. Compound (IIIb) contains two completely asymmetric molecules, which are linked in a disordered manner through intermolecular C-H...O hydrogen bonds. While the crystal stacks in compound (IV) are linked via weak C-H...O hydrogen bonds, the hydrogen-bonded chains extend helically along the crystallographic b axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.