This paper discusses odor source localization (OSL) using a mobile robot in an outdoor time-variant airflow environment. A novel OSL algorithm based on particle filters (PF) is proposed. When the odor plume clue is found, the robot performs an exploratory behavior, such as a plume-tracing strategy, to collect more information about the previously unknown odor source. In parallel, the information collected by the robot is exploited by the PF-based OSL algorithm to estimate the location of the odor source in real time. The process of the OSL is terminated if the estimated source locations converge within a given small area. The Bayesian-inference-based method is also performed for comparison. Experimental results indicate that the proposed PF-based OSL algorithm performs better than the Bayesianinference-based OSL method.
Irregular human behaviors and univariate datasets remain as two main obstacles of data-driven energy consumption predictions for individual households. In this study, a hybrid deep learning model is proposed combining an ensemble long short term memory (LSTM) neural network with the stationary wavelet transform (SWT) technique. The SWT alleviates the volatility and increases the data dimensions, which potentially help improve the LSTM forecasting accuracy. Moreover, the ensemble LSTM neural network further enhances the forecasting performance of the proposed method. Verification experiments were performed based on a real-world household energy consumption dataset collected by the 'UK-DALEąŕ project. The results show that, with a competitive training efficiency, the proposed method outperforms all compared state-of-art methods, including the persistent method, support vector regression (SVR), long short term memory (LSTM) neural network and convolutional neural network combining long short term memory (CNN-LSTM), with different step sizes at 5, 10, 20 and 30 minutes, using three error metrics. INDEX TERMS Energy consumption, forecasting, long short term memory, wavelet transform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.