This paper employs deep learning in detecting the traffic accident from social media data. First, we thoroughly investigate the 1-year over 3 million tweet contents related to traffic accidents in two metropolitan areas: Northern Virginia and New York City. Our results show that paired tokens can capture the association rules inherent in the accident-related tweets and further increase the accuracy of the traffic accident detection. Second, two deep learning methods: Deep Belief Network (DBN) and Long Short-Term Memory (LSTM) are investigated and implemented in extracted tokens. Results show that DBN can obtain an overall accuracy of 85% with about 44 individual token features and 17 paired token features. The classification results from DBN outperform those of Support Vector Machines (SVMs) and supervised Latent Dirichlet allocation (sLDA). Finally, to validate this study, we compare the accident-related tweets with both the traffic accident log on freeways and traffic data on local roads from 15,000 loop detectors. It is found that nearly 66% of the accident-related tweets can be located by the accident log and more than 80% of them can be tied to nearby abnormal traffic data. Several important issues of using Twitter to detect traffic accidents have been brought up by the comparison including the location and time bias, as well as the characteristics of influential users and hashtags.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.