Objective: Healthcare agencies recommend limited use of aerosol-generating procedures to mitigate disease (COVID-19) transmission. However, total dispersion patterns of aerosols, particularly respirable droplets, via dental ultrasonic units is unclear. The purpose of this study was to characterize and map total spatter, droplet and aerosol dispersion during ultrasonic scaling in simulated and clinical contexts.Methods: Ultrasonic scaling was performed on dental simulation units using methylene blue dye-stained water. All resultant stain profiles were photoanalysed to calculate droplet size and travel distance/direction. Airborne particle concentrations were also documented 0-1.2 m (0-4ft.) and 1.2-2.4 m (4-8ft.) from patients during in vivo ultrasonic scaling with a saliva ejector.Results: Stain profiles showed droplets between 25 and 50µm in diameter were most common, with smaller droplets closer to the mouth. In-vivo particle concentrations were uniformly low. The smallest (<1 µm, PM1) and largest (>10 µm, PM10+) particles were most common, especially within 1.2 m (4ft.) of the patient. Respirable particles (PM2.5) were uncommon. Conclusions:Tests showed the highest concentration of small droplets in zones nearest the patient. While uncommon, particles were detected up to 2.4 m (8ft.) away.Furthermore, observed particle sizes were consistent with those that can carry infectious agents. Efforts to mitigate the spread of inhalable aerosols should emphasize proximate regions nearest the procedure, including personal protective equipment and the use of evacuation devices.
Experimental adhesives containing co-doped metaloxide nanoparticles were demonstrated to display strong and long-term antibacterial properties against Streptococcus mutans biofilms. The present study represents an effort to characterize the shear-bond strength (SBS) and color stability (CS) of these novel biomaterials. Experimental adhesives were obtained by dispersing nitrogen and fluorine co-doped titanium dioxide nanoparticles (NF_TiO2, 10%, 20% or 30%, v/v%) into OptiBond Solo Plus (OPTB). Dentin surfaces were wet-polished (600-Grit). Specimens (n = 5/group) of Tetric EvoCeram were fabricated and bonded using either OPTB or experimental (OPTB + NF_TiO2) adhesives. Specimens were stored in water (37 °C) for twenty-four hours (T1), three months (T2), and six months (T3). At T1, T2, or T3, specimens were removed from water storage and were tested for SBS. Disc-shaped specimens (n = 10/group; d = 6.0 mm, t = 0.5 mm) of adhesives investigated were fabricated and subjected to thermocycling (10,000 cycles, 5–55 °C, 15 s dwell time). Specimens’ colors were determined with a VITA EasyshadeÒ V spectrophotometer (after every 1000 cycles). SBS data was analyzed using two-way ANOVA and post-hoc Tukey tests, while CS data was analyzed using one-way ANOVA and post-hoc Tukey tests (α = 0.05). Mean values of SBS ranged from 16.39 ± 4.20 MPa (OPTB + 30%NF_TiO2) to 19.11 ± 1.11 MPa (OPTB), from 12.99 ± 2.53 MPa (OPTB + 30% NF_TiO2) to 14.87 ± 2.02 (OPTB) and from 11.37 ± 1.89 (OPTB + 20% NF_TiO2) to 14.19 ± 2.24 (OPTB) after twenty-four hours, three months, and six months of water storage, respectively. Experimental materials had SBS values that were comparable (p > 0.05) to those from OPTB independently of nanoparticle concentration or time-point considered. Experimental materials with higher NF_TiO2 concentrations had less intense color variations and were more color stable than OPTB even after 10,000 thermocycles. In combination, the results reported have demonstrated that experimental adhesives can establish strong and durable bonds to human dentin while displaying colors that are more stable, thereby suggesting that the antibacterial nanotechnology investigated can withstand the harsh conditions within the oral cavity without compromising the esthetic component of dental restorations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.