This text takes the spun-laced non-woven fabric weaving machinery as an illustration, introduces the Textile machinery synchro-control system based on Siemens S7-300 PLC and Textile machinery by Siemens plc and DANFROSS Inverter.
A novel model predictive control method was proposed for a class of dynamic processes with modest nonlinearities in this paper. In this method, a diagonal recurrent neural network (DRNN) is used to compensate nonlinear modeling error that is caused because linear model is regarded as prediction model of nonlinear process. It is aimed at offsetting the effect of model mismatch on the control performance, strengthening the robustness of predictive control and the stability of control system. Under a certain assumption condition, linear model predictive control method is extended to nonlinear process, which doesn’t need solve nonlinear optimization problem. Consequently, the computational efforts are reduced drastically. The simulation example shows that the proposed method is an effective control strategy with excellent tracing characteristics and strong robustness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.