The human brain is a large-scale integrated network in the functional and structural domain. Graph theoretical analysis provides a novel framework for analysing such complex networks. While previous neuroimaging studies have uncovered abnormalities in several specific brain networks in patients with idiopathic generalized epilepsy characterized by tonic-clonic seizures, little is known about changes in whole-brain functional and structural connectivity networks. Regarding functional and structural connectivity, networks are intimately related and share common small-world topological features. We predict that patients with idiopathic generalized epilepsy would exhibit a decoupling between functional and structural networks. In this study, 26 patients with idiopathic generalized epilepsy characterized by tonic-clonic seizures and 26 age- and sex-matched healthy controls were recruited. Resting-state functional magnetic resonance imaging signal correlations and diffusion tensor image tractography were used to generate functional and structural connectivity networks. Graph theoretical analysis revealed that the patients lost optimal topological organization in both functional and structural connectivity networks. Moreover, the patients showed significant increases in nodal topological characteristics in several cortical and subcortical regions, including mesial frontal cortex, putamen, thalamus and amygdala relative to controls, supporting the hypothesis that regions playing important roles in the pathogenesis of epilepsy may display abnormal hub properties in network analysis. Relative to controls, patients showed further decreases in nodal topological characteristics in areas of the default mode network, such as the posterior cingulate gyrus and inferior temporal gyrus. Most importantly, the degree of coupling between functional and structural connectivity networks was decreased, and exhibited a negative correlation with epilepsy duration in patients. Our findings suggest that the decoupling of functional and structural connectivity may reflect the progress of long-term impairment in idiopathic generalized epilepsy, and may be used as a potential biomarker to detect subtle brain abnormalities in epilepsy. Overall, our results demonstrate for the first time that idiopathic generalized epilepsy is reflected in a disrupted topological organization in large-scale brain functional and structural networks, thus providing valuable information for better understanding the pathophysiological mechanisms of generalized tonic-clonic seizures.
Although the brain areas in the default-mode network (DMN) act in a coordinated way during rest, the activity levels in the individual areas of the DMN are highly heterogeneous. The relation between the activity levels and the pattern of causal interaction among the DMN areas remains unknown. In the present fMRI study, seven nodes of the DMN were identified and their activity levels were rank-ordered based on a power spectral analysis of the resting blood oxygenation level-dependent (BOLD) signals. Furthermore, the direction of information flow among these DMN nodes was determined using Granger causality analysis and graph-theoretic methods. We found that the activity levels in these seven DMN nodes had a highly consistent hierarchical distribution, with the highest activity level in the posterior cingulate/precuneus cortices, followed by ventral medial prefrontal cortex and dorsal medial prefrontal cortex, and with the lowest level in the left inferior temporal gyrus. Importantly, a significant correlation was found between the activity levels and the In-Out degrees of information flow across the DMN nodes, suggesting that Granger causal influences can be used to predict BOLD activity levels. These findings shed light on the dynamical organization of cortical neuronal networks and may provide the basis for characterizing network disruption by brain disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.