SummaryMatched case-control studies are popular designs used in epidemiology for assessing the effects of exposures on binary traits. Modern studies increasingly enjoy the ability to examine a large number of exposures in a comprehensive manner. However, several risk factors often tend to be related in a non-trivial way, undermining efforts to identify the risk factors using standard analytic methods due to inflated type I errors and possible masking of effects. Epidemiologists often use data reduction techniques by grouping the prognostic factors using a thematic approach, with themes deriving from biological considerations. We propose shrinkage type estimators based on Bayesian penalization methods to estimate the effects of the risk factors using these themes. The properties of the estimators are examined using extensive simulations. The methodology is illustrated using data from a matched case-control study of polychlorinflated biphenyls in relation to the etiology of non-Hodgkin's lymphoma.
To improve water vapor adsorption, this study employed oxalic acid–ethyl acetate acidic hydrolysis to modify honeycomb activated carbon and introduce hydrophilic functional groups. Scanning electron microscopy (SEM), Boehm titration, Fourier transform infrared spectroscopy (FT-IR), and an automatic surface area analyzer (BET) were used to characterize the microscopic morphology, surface functional groups, specific surface area, and pore size changes. The results showed that, when the concentration of oxalic acid is 0.0006 mol/cm3, the specific surface area is 179.06 m2/g. After hydrolysis with ethyl acetate, the original functional groups became more abundant, while the number of total acidic functional groups on the surface grew from 0.497 mmol/g to 1.437 mmol/g. The static water vapor adsorption experiments were conducted on modified activated carbon under constant temperature and humidity conditions. Compared with unmodified activated carbon, the activated carbon modified with 0.0006 mol/cm3 oxalic acid increased the adsorption capacity of water vapor by 15.7%. The adsorption capacity of activated carbon after being combined with 0.0006 mol/cm3 oxalic acid and ester hydrolysis modification increased by 37.1%. At the same temperature, the adsorption capacity increased with a higher relative humidity. At the same relative humidity, the adsorption capacity decreased as the temperature rose. Therefore, this modification method may provide clues for the application of enhancing the hygroscopic ability of activated carbon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.