<p class="0abstract"><span lang="EN-US">In order to study the power patrol technology of unmanned aerial vehicle, the tracking algorithm was applied. The automatic patrolling of power lines was discussed in terms of algorithms. An unmanned aerial vehicle transmission line inspection method based on machine vision was proposed. The image and video of the unmanned aerial vehicle inspection of the power line had a complex background. By Wiener filtering de-noising and probability density functions, the image clarity was improved. According to the existing tracking techniques and algorithms, a Camshaft target tracking algorithm based on lossless Kalman filter was proposed. The method of non-destructive Kalman filter was adopted to predict the region of interest of power line identification. Using the Camshaft algorithm, the prediction of the window was searched and the size of the window was adjusted. Transmission lines were tracked in real time. The results showed that the restoration effect of the algorithm was obvious. The clarity of the image was improved. It prepared for the extraction and tracking of the future transmission lines. Therefore, the proposed method provides a feasible way for the UAV power line inspection technology based on machine vision.</span></p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.